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Introduction

deformations of modular Galois representations, and weight one

This work grew out of Buzzard and Taylor’s attempt to generalise, to the Hilbert case, Taylor’s pro-
gramme ([59]) to prove new cases of the strong Artin conjecture for odd continuous two-dimensional
Galois representations in the icosahedral case. We complete the programme in the Hilbert case in this
paper by a method slightly different from what they probably had in mind.



In 1999, Buzzard and Taylor [11] ([9]) made substantial progress on the strong Artin conjecture for
odd, continuous representations p : Gal(Q/Q) — GLy(C) of the absolute Galois group Gal(Q/Q) of
Q, which culminated in [10] and subsequently in [60]. In proving the hitherto intractable ‘icosahedral’
case of the conjecture, Buzzard and Taylor built on the work of Katz in the 70s and Coleman in the 90s
on the theory of p-adic modular forms, to prove a modular lifting theorem which constructs a weight
one eigenform corresponding to an odd two-dimensional p-adic representation Gal(Q/Q) — GLq (Qp)
(potentially) unramified at p. One of the key observations they made in in [11] was the idea that one
can use Hida theory of p-adic modular forms to draw results about weight one forms from results about
weight two forms in the form of modular lifting theorems by Wiles, Taylor-Wiles and Diamond.

In generalising Taylor’s strategy to the Hilbert case, one has to work with sections of the determinant
of the ‘universal’ cotangent sheaf over (admissible subsets of) Hilbert modular varieties. Rapoport [45]
probably was the first to consider a [F : Q]-dimensional moduli space Y of abelian varieties with real
multiplication (HBAV) by a totally real field F' satisfying some PEL conditions (in particular of ‘level
prime to p’); and [45] shows that ¥~ gives rise to a Z,-integral model for the (connected) Shimura variety
corresponding, in particular, to the algebraic Q-group G, defined by the pull-back of Resp/qGL2 —
Resp/qG along G — Resp/qG (where G denotes the multiplicative group scheme base-changed over to
F). The determinant of the cotangent bundle of the universal HBAV defines an automorphic line bundle
oty of parallel weight one and one may identify weight one holomorphic modular forms with integral
coefficients with global sections of 4 over the moduli space Y. With the assumption that p divides
the discriminant of F', one is naturally led to work with the models Deligne-Pappas constructed in [16].
However, they no longer satisfy the ‘Rapoport condition’-the Lie algebras of HBAVs A over S have
to be locally free O ®z Og-modules of rank one—and they are not smooth over the base as aresult; in
particular, one can calculate local models to deduce that the special fibre at a prime p which ramifies in F
is singular in codimension 2 and geometry of the corresponding rigid space is discouragingly complicated
for arithmetic applications. To at least resolve the difficulties arising from geometry, it was suggested by
Buzzard and Taylor to the author to ‘resolve’ the singularities of the Deligne-Pappas models using ideas
from Pappas-Rapoport [41].

Fix an embedding Q into Qp. In this paper, we constructs an integral model Yg R of G of level
U C G(A™) with UNG(Q,) = G(Z,) over the ring of integers O of a finite extension L of Q,, containing
the image of every embedding F — Q — Qp, and prove that it is smooth over O. We also define a model
Ygllf; with Iwahori level at the primes of F above p, analogous to the construction given by Pappas [40]
and Katz-Mazur [34]. Note that our models all have explicit descriptions as moduli problems. This is
critical, for example, when one defines Hecke operators moduli-theoretically as in the work of Katz [33]
and consider overconvergent eigenforms. We accordingly build a p-adic theory of Hilbert modular forms
on the models Y7 . For applications, we shall prove a modular lifting theorem which generalises a result
of [11]. More precisely,

Theorem 1 Suppose p > 3 and let L be a finite extension of Q, with ring O of integers and mazimal
ideal \. Let o
p: Gal(F'/F) — GL2(O)

be a continuous representation such that

p is totally odd,
e p is ramified at only finitely many primes of I,
e p=(p mod \) is absolutely irreducible when restricted to Gal(F/F((,)),

e if p = 5 and the projective image of p is isomorphic to PGLa(F5), the kernel of the projective
representation of p does not fix F((s),

e there exists a cuspidal automorphic representation 11 of GLo/F which are ordinary at every place
of F' above p such that pg ~ P,

e the image of inertia subgroup at every finite place of F' above p is finite.



Then there exists a cuspidal Hilbert modular eigenform defined as a section of the automorphic bundle
o/x (—cusps) over the p-adic generic fibre X = XIR [1/)\] of a compactification X2 of YEE of par-
allel weight one, whose associated Galois representation, in the sense of Rogawski-Tunnell/Wiles, is
isomorphic to p.

Assuming that p splits completely in F' and that p, when restricted to every place of F' above p, is
the direct sum of two characters which are distinct mod A, the theorem is proved in [49]. Assuming p
is unramified in F' and that the restriction of p at every place of F' above p is the direct sum of two
characters whose ratio is non-trivial mod A and is unramified (resp. tamely ramified), the theorem is
proved in [31] (resp. [32]). On the other hand, Pilloni [43] has a a result stronger than [31] allowing small
ramification of p in F, while Pilloni and Stroh have a paper [44] announcing the same set of statements
as the main theorem above (although our approach is completely different from theirs).

The theorem is established in two major steps. Given a residually automorphic p-adic represent-
ation p as above (note that p is not assumed ‘p-distinguished’), we firstly prove an R = T theorem
for p-ordinary representations/forms such that p defines a map from R to O, where R parameterises
deformations of p which are reducible at every place of F' above p (as in [23]) and where T is a Hida
(nearly) ordinary Hecke algebra localised at p. Our R = T theorem holds without recourse to taking
reduced quotients (we indeed prove that, not only 7" but R is also reduced); we do this by following
Snowden’s insight in [55], non-trivially observing that the relevant local deformation rings (including
those at places above p) are Cohen-Macaulay. The maps from T" to O, corresponding to p and eigen-
values of p(Froby,) for all places p above p, define a family of p-adic overconvergent cuspidal Hilbert
modular eigenforms of weight one which are ‘in companion’. The construction, however, is no longer
as straightforward as the case p is split with distinct eigenvalues at places above p (as in [11], [9], and
[31]), and we follow Taylor’s idea in the case F' = Q, combined with the reducedness of R, to deal with
the general case. We then follow Kassaei’s paper [31] morally to ‘glue’ these p-adic companion forms
in order to construct a classical weight one form over X. The beautiful idea of Buzzard and Taylor
[11] that, from their g-expansion coefficients (by the strong multiplicity one theorem), one can spot a
set of linear equations satisfied by the p-adic companion eigenforms is sill very much in force in this paper.

It is absolutely crucial that we work with YL}) R and YKI;I%V. Suppose for brevity that p has only one
prime p in F. Let k be the residue field of p and let |k| = p/. Let A be a HBAV over an O-scheme of
the type considered by Deligne-Pappas [16], equipped with a finite flat Op-subgroup scheme C of A[p]
of order |k| which equals its orthogonal for the Weil paring on A[p]. In proving analytic continuation
results, it is desirable to describe, for a fixed C, exactly the locus where

deg(C) > deg(Alp]/D)

hold! for all Op-subgroup schemes D C A[p] that intersect trivially with C' in A[p].

If F = Q, it is proved in [33] (and made more precise in [9]) that one can explicitly ‘solve equations’
in one-dimensional formal groups to compute and compare deg(C) and deg(D) explicitly. In the general
unramifed Hilbert case, in dealing with this problem, Goren-Kassaei [24] finds a way to understand
degrees near ordinary loci in terms of local geometry of Hilbert modular varieties, and instead solves
‘local equations’ of HMVs. When p ramified in F', A[p] is no longer a truncated Barsotti-Tate of level
1 in general (indeed, A[p] is truncated Barsotti-Tate of level 1 if and only if A satisfies the Rapoport
condition), and it is not a straightforward task to compute the Dieudonne module of A[p] in the standard
sense, let alone deducing results about deg(C) and deg(D). Indeed, the gist of work of Andreatta-Goren
[1] is to keep track of the relative Frobenius in characteristic p that is no longer ‘well-behaved’ in the
presence of ramification. We propose a solution to these issues by working with the integral models Y,}j R
and YR over O. More precisely, we

o define new invariants for HBAVs parameterised by the x-fibre YER (where k is the residue field of
0), by which we single out HBAVs in co-dimension < 1 that are ‘not too supersingular’ and ‘well-
behaved’ for analytic continuation (and analytic continuation results are established exclusively
over this locus);

Ldeg(C) is ‘normalised’ such that deg(C) = 0 (resp. f) if and only if C' is multiplicative (resp. étale)



o define a finer degree which reads geometry of the s-fibre ?E?W of YFR better;

. . . —PR
e use these invariants to understand geometry of fibres of the forgetful functor/morphism from Yy,
—PR
e over the p-adic generic fibre of Y[}DIE},, we make appeal to its comparatively simple set of local
equations to prove a canonical subgroup theorem, and make use of ‘mod p Dieudonne crystals’; in
place of Breuil-Kisin modules in the unramfied case, to prove analytic continuation results we need
in the general ramified case.

The condition that pr is (nearly) ordinary at all place of F' above p is essential in our approach;
more precisely, essential in constructing overconvergent companion forms. On the other hand, it is quite
likely that one can extend the main theorem to p = 2 (See [50]). In return for assuming that 3 is indeed
a direct sum of distinct characters at every place of F' above p, Skinner-Wiles [54] allows us to ‘extend’
our main theorem ‘orthogonally’ to the case p is reducible. The general residually reducible case requires
some more work, and is considered also in [50].

A conjecture of Fontaine-Mazur asserts that an n-dimensional continuous irreducible p-adic repres-
entation of the absolute Galois group Gal(F/F) of a number field F, which is unramified outside a finite
set of places and which is finite when restricted to the inertia subgroup at every place of F' above p,
has finite image. Since p-adic Galois representations associated to classical weight one forms have finite
image, the Fontaine-Mazur conjecture for p exactly as above follows immediately. Many more cases of
the Fontaine-Mazur conjectures are proved in [50].

Finally, combined with a theorem about modularity of mod 5 representation p, we shall prove the
strong Artin conjecture:

Theorem 2 The strong Artin conjecture for two-dimensional, totally odd, continuous representations
p: Gal(F'/F) — GLy(C) of the absolute Galois group Gal(F/F) of a totally real field F', holds.

By work of Artin, Langlands, and Tunnell, the ‘soluble’ cases where the image of projective repres-
entation of p is dihedral, octahedral, and tetrahedral are known; and the theorem proves the icosahedral
case completely.

We remark that the p-adic integral models we construct also have applications to p-adic theory of
Hilbert modular forms. As Johansson [30] demonstrates, one can prove an analogue of Coleman’s the-
orem, ‘overconvergent modular forms of small slope are classical’, using our models. His approach is
a generalisation to quaternion Hilbert modular forms of Coleman’s original ‘cohomological approach’,
while one can take Kassaei’s ‘gluing approach’ with our p-adic integral models to prove it. It is also
likely that one can extend the ‘geometric’ construction of an eigenvariety for Hilbert modular forms by
Andreatta-Iovita-Stevens and Pilloni to the general ramified case, and prove various Langlands functori-
ality in p-adic families.
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2 Deformation rings and Hecke algebras (following Geraghty)

This section follows [13] and [23].
Let L be a finite extension of Q, with ring of integers O, maximal ideal X, and residue field k.

For every finite place Q, let Fg denote the completion of F' at Q with ring of integers Og,,
Dq ~ Gal(FQ /Fq) denote the decomposition subgroup at Q and Iq denote the inertia subgroup at
Q of the absolute Galois group Gal(F/F) of a totally real field F. Let Artq denote the local Artin map,
normalised to send a uniformiser 7q of Of, to a geometric Frobenius element Frobg.

Let
p:Gal(F/F) — GL,(k)

be a totally odd (i.e., the image of complex conjugation with respect to every embedding of F' into R is
non-trivial), continuous, irreducible representation of Gal(F'/F'). For every prime Q of F', let pg, denote
the restriction to the decomposition group Dq at a place Q of F.

For every prime Q of F, let Rg denote the universal ring for liftings of pg.

Let S be a finite set of places in F' containing the set Sp of all places of F' above p and the set S
of all infinite places of F', and let T be a subset of S. Suppose that T does not contain S..
Let Fs denote the maximal extension unramified outside S, and let Gg = Gal(Fg/F). Let

S = (S, T, (I§)qes)

be a deformation data, where IS C Rg is an ideal defining a local deformation problem ¥q and a
subspace Lq C H'(Dq,adp) (2.2.4, [13]), and we define H:(Gg,adp) as follows: Firstly, let

Cy'**(Gs,adp) = P (0)& @ C°(Dq,adp),

QesS-T QeT

C5*°(Gs,adp) = € C'(Dq,adp)/Mq & P C*(Dq, adp),
Qes-T QeT

where Mq denotes the pre-image in C!(Dq,adp) of Lq, and let

C°(Gs,adp) = @D C'(Dq, adp)
Qes

for t > 2; and let
C%(Gs,adp) = C'(Gs, adp) @ C5 '°°(Gs, adp)

with the boundary map C4(Gs,adp) — CL(Gs, adp) sending (¢, (¢8°)) to (09, (resq¢ — 8¢1C3C)). We
then define H:(Gg,adp) to be the cohomology group defined by the complex.

Let C = Co denote the category of O-algebras as defined in 2.2 of [13]; its objects are inverse limits
of objects in the category C/ of Artinian local O-algebras R for which the structure map O — R induces
an isomorphism on residue fields and its morphisms are homomorphisms of O-algebras which induce
isomorphisms on residue fields. Let Rg denote the universal ring for T-framed deformation of type
(2q)qes (when T is non-empty). If T is empty, write Ry,. We let RI2° denote the completed tensor
product of Rg / I(g for Q in T, and let R? denote the formal power series ring in n?|T| — 1 variables with
coefficients in O normalised such that

RY ~ Ry ® RY.



Proposition 3 Rg 1s the quotient of a power series ring over RIEOC in dim Hy(Gs,adp) variables. If
urthermore HZ(Gg,adp) = (0), then it is indeed a power series ring over RYC in dim HL(Gg,adp

b b b
variables.

Proof. Corollary 2.2.12, [13]. O

The local Tate duality
adp x adp(1l) — k(1)

given by the ‘trace pairing’ gives rise to the perfect pairing
H'(Dq,adp) x H'(Dq,adp(1)) — k.
The orthogonal complement Lé of Lo C H'(Dq,adp) will be taken with respect to the pairing.
Following 2.3 [13], given a deformation problem ¥ = (S, T, (Lq)qes, (IS)QGS), define
Hy,. (Gs,adp(1))

to be the kernel of the map

H'(Gs,adp(1)) — €D H'(Dq,adp(1))/Ls.
S—T

Proposition 4 Suppose n = 2.

dim HL(Gs, adp)
+ Yqes_rdim Lo — dim H%(Dq, adp)

Proof. Tt follows from the long exact sequence defining H (G g, adp) that

> (—1)tdim HE (G, adp)
= >, (=1)'dim HY(Gs,adp) — Y qes X(Dq,adp) — Y qeg_r(dim Lo — dim H%(Dq,adp)),

hence, we deduce dim Hy,(Gg,adp) is

dim H2(Gg, adp) + dim H&(Gs, adp) — dim HE(Gs, adp) — x(Gs, adp)
+ 3 qes X(Dq,adp) + Yo ges_r(dim Lo — dim H(Dq, adp)).

By the Poitou-Tate global duality, we deduce dim H3 (G, adp) = dim H°(Gg,adp(1)), and dim HZ(Gg, adp) =
dim H},, (Gg,adp(1)). By the global Euler characteristic formula ([39], Theorem 5.1), x(Gg,adp) =
—2[F : Q]. By the local Euler characteristic formulae (Theorem 2.13 in [39] and Theorem 5, Chapter II,

5.7 in [51]) > ¢ x(Dq,adp) = —2[F : Q]. Combining these, we get the assertion. [J

Suppose that Sq is a set of primes Q of F' not in S such that
e Nr/QQ =1 mod p;

® pq is unramified, and is a direct sum of unramified characters p; and p,, where p;(Frobq) and
P2 (Frobg) distinct.

Define Lq C H'(Dq,adp) to be the subspace of classes corresponding to conjugacy classes of liftings
p which are direct sum of characters p; and py such that p; lifts p, (t = 1,2) and p, is unramified; hence
dim Lq — dim H%(Dq,adp) =1 (see 2.4.6 in [13]).

Fixing a deformation data X as above, let

2q = (SUSq, T, (Lq)qesusq: (IG)qesusq)-



The restriction to the inertia subgroup I at Q in Sq (as in the preceding section), of the determinant
of a lifting p of p of type Xq as above factors through the composition of the local Artin map (restricted
to Iq) followed by the surjection to the maximal pro-p quotient Aq of (Or/Q)*. As a result, we have
amap Aq — Rx,; and HQ Aq — Rx,, where Q ranges over Sq.

We now apply the formula above to ¥ to compute dim HéQ(GsusQ, adp).

Proposition 5 Suppose n = 2, and suppose that p is absolutely irreducible when restricted to Gal(F /F((,))-
Suppose that T is non-empty. Suppose for a finite place Q in S — T that dim Lg — dim H°(Dq, adp) = 0
if Q is not in Sp, while dim Lg — dim H°(Dq, adp) = [Fq : Q,] if Q is in Sp. Then

dim HéQ (Gguswadﬁ)
= dimHéé(Gsqu,adﬁ(l)) + 150l = 2oqiee 1 = 2qernss [Fa « Qpl-

Proof. Since dim HY(Gg,adp) is 0 (resp. 1) when T is non-empty (resp. empty), dim H2(Gg, adp) —
dim H°(Gg,adp(1)) = 0, and it suffices to check

> dimLq — dim H°(Dq, adp)
Qe(SuSq)—-T

equals

1Sol=> 1= > [Fq: Q)
Qoo

Qe(TNSp)

By the definition of Sq, it is equivalent to check
> dimLg—dimH(Dg,adp) =— Y 1— > [Fq:Q,).
Qe(S-T) Ql Qe(TNSp)

By the assumptions of the proposition, it is equivalent to the validity of

> Fa:Ql+ Y [Fe:Ql=-(3-2-> 1
Qloe

Qe(S—-T)NSp Qe(TNSe) Qoo

but this holds as both sides equal [F : Q]. O

2.1 Universal rings for local liftings

In this section, we define universal rings for liftings/deformations that we need.

As in the previous section, Sp denote the set of all primes above p and S, denote the set of infinite
places of F'. Let Sy, St and Sa denote disjoint finite sets of finite primes of F' not dividing p. Suppose
furthermore that Sa is non-empty and any prime Q of Sg U Sy, satisfies Np/qQ =1 mod p.

Suppose that p is odd. Suppose now that
p:Gal(F/F) — GLa(k)
is a continuous representation of the absolute Galois group Gal(F/F) of F such that
e p is totally odd,
e p is unramified outside Sp U Sg U S, U Sa,
e p, when restricted to any prime in Sp U Sg U Si,, is trivial,

e the restriction to Gal(F/F((,)) of p is absolutely irreducible.



e p, when restricted to any prime Q in Sy, is unramified and H°(Dq,adp(1)) = 0 (it is possible to
find a such Q, indeed satisfying Np/qQ # 1 mod p, follows for example from Proposition 4.11 in
[15]),

e if p = 5 and the projective image of p is PGL2(F5), the kernel of the projective representation of
p does not fix F((5),

We remark that S earlier will be Sp U Sg U ST, U Sa U So and T will be S — S.

For every place p of F' above p, let G|, denote the image of the inertia subgroup I, in the pro-p-
completion of the maximal abelian quotient of the decomposition group D, at p, and let G denote the
product of G, over all p above p. The local Artin map Art, identifies G, with 1+ 7O, where 7 = 7, is
a uniformiser. Let X, denote the Qp-linear embeddings of F} into L.

Let G denote the multiplicative group over F' and let Resp/QG denote the Weil restriction. Let
T ~ G x G denote the algebraic group of diagonal torus over F' in GLy,r and let Resp/qT denote its
Weil restriction, which is isomorphic to Resp/qG x Resp/QG. By slight abuse of notation, we continue
to use the same symbols to mean the integral models of the aforementioned algebraic groups.

For every integer r > 1, let Resp/QT'(Zy)[p"] C Resp/QT(Z,) denote the kernel

ker(Resp/QT(Zy) — Resp QT (Z/p"Z))

of the standard ‘reduction mod p"’ morphism. Simialrly, define Resp/qG(Z,)[p"]. Granted, we may
identify Resp/QT'(Zy)[p] with G x G and Resp/qG(Zy)[p] with G. When convenient and no confusion
is expected, we may write A = A (resp. Ag) to mean Resp,qT(Zy)[p] (resp. Resp/qG(Zy)[p)).

We define the ‘local’ Iwasawa algebra A, to be the O-algebra O[[G,, x G, ]| of the pro-p-group G, x G,
and let A, denote the Iwasawa algebra ®pAp. The ‘global’ Iwasawa algebra A, is identified with
OJ[G x @], and hence with O[[A]].

The O-algebra A, parameterises the pairs of characters x = (x1, x2) = Hp (Xp,1, Xp,2) of G which take
values in objects of C and which are liftings of the trivial character in £*; each algebraic character x, ¢
of G, is parametrised by a |X,|-tuple Ap+ = (Ar¢), of integers with 7 ranging over ¥,. By slight abuse
of notation, by a tuple A = (A1, Ap,2)p of integers as above, we shall also mean the pair of algebraic
characters corresponding to A.

Define A to be the quotient O[A/(Of , N A)]] of O[[A]] parameterising all characters which satisfy

the ‘parity condition’, i.e., factor through the p-adic closure O;’ + NA of the diagonal image of the totally
positive units O, in A = G x G. Note that A is of relative dimension 1+ [F': Q] + er, over O, where
er, = 0 if the Leopoldt conjecture of the pair F' and p holds.

If w is a fixed integer, the set of 2[F : QJ-tuples A (corresponding to a pair of algebraic characters by
definition) such that A;1 > A- 2 and Ay 1+ A2 = w for every p and 7 in ¥, is in bijection with the set of
[F' : Q]-tuples k = (k.) such that k. > 2 and k; = w mod 2 by decreeing that A = (A1, A 2) corresponds
to k= (A1,r — A2,r +2) and, conversely, k = (k;) corresponds to A = ((w + k; — 2)/2, (w — k. + 2)/2).

2.2 Local liftings at places above p

Let L be a finite extension of Q,, and let O denote its ring of integers with maximal ideal A and residue
field k . Let V = O?%. Let p be a place of F above p that we fix, and let p, : Dy — GLo (RE) denote the
universal lifting of the restriction p, (assumed to be trivial) to the decomposition group D,, at p of p above.

Define a functor GI‘E which sends an O-algebra R to the set of data consisting of
e a filtration Fil(V®o R) = (0 = (Vo R)(0) C (V®o R)(1) C (V®o R)(2) =V &0 R) of V®o R,
e a map RE — R whose composition p, ®o R : D, — GL2(R) with the universal lifting D, —

GL, (RE) preserves the filtration.

Define a functor GrEp which sends an O-algebra R to the set of data consisting of an R-valued point of

GrH

p as above, together with an O-algebra morphism 7 from A, to R, satistying the following condition: if



X = (X1, x2) is the universal pair of characters G, — A, the R-valued character, defined as the projection
of I, to Gy, followed by x: ®- R, matches up with the action via p, ®o R on (V ®o R)(t)/(V ®o R)(t—1),
when restricted to I;,.

Lemma 6 The functor GrE (resp. Gr%‘p) is representable by a scheme XGrE (resp. XGTEP ).
Proof. This is standard. O

Forgetting filtrations for every S-point defines a morphism X, o — Spec RU. while, by definition, we
p
have a closed immersion XGer — Spec RJ@oA, (Lemma 3.1.2 in [23]). We define Ry = RPD/IPD’Ord

by letting Spec RE’Ord be the schematic closure of the image of XGrQ [1/p] — XGr% — Spec RE®OAP-
P P

By the projection, X0 s thought of as a Ap-scheme; and, similarly, RPD’Ord is a Ap-algebra. In partic-

P

ular, let x denote the morphism Spec RE’ord — Spec Ay.

Let £ denote a closed point of Spec L¢ — Spec RE’Ord[l /p] for a finite extension L¢ of L and x =
(X1, Xx2) denote a pair of characters corresponding to the point x o § of Spec Ay[1/p]. Suppose that x1
and y2 are distinct and that exs and y; are also distinct (where € is the cyclotomic character). The pair
of characters satisfying these conditions are evidently dense in Spec A,[1/p].

Lemma 7 The fibre Spec RE’;rd of Spec RPD"Ord at x along k is reqular of dimension [Fy : Q] + 4; and

the localisation Spec RE’;rd of Spec RPD’Ord at & is reqular of dimension 3[F, : Q] + 4.

Proof. The assertions follow from Lemma 3.2.2 in [23]. O

Proposition 8 Suppose that [Fy, : Qp] > 2. LetT' be a minimal ideal of A,. Then Spec RE’Ord ®a, Ap/T
is geometrically irreducible of relative dimension 3[F, : Q] + 4 over O.

Proof. This is proved essentially in Corollary 3.4.2 in [23] or Proposition 3.14 in [62]. The essence of
the proof is to establish that every irreducible component of X0 [1/p] is of dimension 3[F, : Q,] + 4,
p

which one checks by computing (Lemma 3.2.3 in [23]) its completed local ring at a closed point whose
projection to Spec A, corresponds to a pair of characters x = (x1,x2) such that x1 = ex2 does not
hold. It follows that for every minimal ideal I' of A,, Spec RE’Ord ®a, Ap/T is irreducible of dimen-

sion at most 1 + 3[F, : Q,] + 4. However, it follows from the ‘moduli description’ of the morphism
XGrEp [1/p] — Spec RE’Ord[l/p] of Spec A,[1/p]-schemes that the morphism is finite (more precisely,
quasi-finite with its fibres singletons, but, combined with the projectivity of the morphism, the finiteness

holds) if it is pull-back over to the open subscheme of Spec A, [1/p] corresponding to the pairs of distinct
characters, and this suffices to establish the assertion as in the proof of Corollary 3.4.2 in [23]. O

We need a variant of RPD’Ord that further parameterises ‘eigenvalues of the characteristic polynomial

of a Frobenius element of D,’. Let ¢ = ¢, be a Frobenius lift in D, that we fix. We proceed differently
from Pilloni-Stroh’s construction in Section 4.1 of [44] in the ordinary case.

Let RE’+ denote the universal ring for the liftings p of (the trivial two-dimensional representation)
Py together with choices of roots of the quadratic polynomial X2 —trp(¢)X + det p(¢) = 0.

Define Ry"*"" by the pull-back:

O,ord,+

Spec R, — Spec RE’+®Ap

SpecRpD’O’rd — SpecRE@Ap

where the horizontal morphisms are closed immersions. Similarly, define Xérrm to be the pull-back of
Ap

X0 along Spec RIFT&A, — Spec RI&A,. As the formation of scheme-theoretic closure commutes
G.rAp P p P p



O,ord,+ -

with flat base change, Spec R, is also the scheme-theoretic closure of the morphism X&D [1/p] —
Ap

0,
Xgrgjp — Spec R, +®Ap.

Proposition 9 Suppose that [F, : Qp) > 2. LetT' be a minimal ideal of A,. Then Spec REI ordt e ®@p, Ay /T
is geometrically irreducible of relative dimension 3[F, : Qp]+4 over O. Furthermore, RD ordt @ ®p, Ap/T
is flat over O, Cohen-Macaulay and reduced; and RE sord,+ ®a, Ap/(T, A) is reduced.

Proof. For the first assertion, the proof of Proposition 8 works verbatim if the morphism X grD [1/p] =
Ap

Spec RE’Ord’Jr[l/p] is finite when restricted to the open subscheme of Spec A,[1/p] corresponding to the
pairs of distinct characters. But this is immediate.

To prove the second assertion, we define another Ay-algebra R, which is universal for ‘explicit’
liftings of p,. This is more amenable to explicit calculatlons and we shall write down a set of explicit
equations to establish that it is Cohen-Macaulay, reduced and flat over O.

Let RE’Ord’T denote the quotient of RE7+®AP parametrising (p, a(¢), x) where x = (x1, x2) and where
a(¢) denote a root of the polynomial X2 — tr p(¢) X + det p(¢) = 0 satisfying the following conditions:

O,ord, T

(1) trp(2) = xa(2) + xa(2) for 2 in I,
(I1) tr p(6) = a(9) + B() where 5() denotes det p(¢)/a(9),
(IT1) det (p(9) — B(6)) =

(IV) 1+ det(xs(2)" 1p<z>> — tr (xa(2)"1p(2)) for z in G,

V)
(V1)

(p(2) = x2(2))(p(27) = x2(27)) = (x1(2) — x2(2))(p(7) — x2(27)) for z and 2+ in I,
(p(9) — a(9))(p(2) = x2(2)) = (B(¢) — a(#))(p(2) — x2(2)) for z in Iy, or equivalently,
p(9z) = B(d)(p(2) — x2(2)) + x2(2)p(¢)-

Let {z; },, where 1 < 7 < [F}, : Q,], be the generators of I,. In writing

_(B®) 0 Ay B
Plo) = ( 0 ﬂ(¢>)> * (Ci DZ)
and, for every 1 <7 < [F}, : Q]

o= (5 2 (& B)

it is possible to check that REI ordt jg given by the formal power series ring with coefficients in O with

A+1[F,:Qp)+(4+1)= [ : Qp] + b variables

{Aﬁ B7'7 07'7 DT7 XZ(ZT)}Tv Ad)v B¢>7 C¢77 D¢>7 ﬂ(¢)
with their relations given by the 2 by 2 minors in

Ay C4 —Cy =Dy --- —Cyq —Dy
By Dy A By - A4 By

where d = [F}, : Q,]. Let RE’Ord’T’V denote the quotient of the polynomial ring by the ideal given by the
same set of variables with the same set of relations.

By definition, RD ord: 1V is determinantal in the sense of Section 1-C in [8] or Section 7 in [7], while

RD ordT is determinantal according to Section 18.5 in [18]. As the Cohen-Macaulay-ness and the flatness

(over O) pass from Ry TV to RF™T we establish these properties for Ry "V,
Firstly, RD ord, T,V s Cohen- Macaulay (see Theorem 18.18 in [18], or Corollary 2.8 in Section 2.B in

O,ord, T,V O,ord, T,V

[8]). It is also possible to explicitly spot a regular sequence in R, and use that to prove R,

10



is Cohen-Macaulay directly, as in the proof of Proposition 2.7 in [53]. Eisenbud (see Section 18.5 with its
reference to Exercises 10.9 and 10.10 in [18]) also claims, without a proof, that it is of relative dimension

5[Fy : Qpl+5— (2[F, : Qp] +1) =3[F, : Qp] +4

over Oj; this will be checked directly in the forthcoming argument.
The reducedness of RE’Ord’T’V indeed follows from the defining equations. To see this, we shall prove

that the L-algebra RE’Ord’T’V [1/A] and the k-algebra RE’Ord’T’V/)\ are both domains of the same dimension
3[F}, : Qp]+4. Granted, it follows from Lemma 2.2.1 in [55] (also see Theorem 23.1 in [38]) that RE’Ord’T’V
is flat over O and follows, as result, that RPD’OM’T’v C RE’Ord’T’V[l/)\] is reduced.

To see that the naturally graded L-algebra RE’Ord’T’V [1/]] is a domain, one notes that Proj RE’Ord’T’V [1/X]
is covered by the open sets {X # 0} where X ranges over the single-variable equations defined by those

appearing in the relations defining RE’Ord’T’V, i.e, X is any one of the 4 4+ 4[F}, : Q,] variables in the list

{Ag, By, Cy, Dy; {Ar, Br,Cr, Dr 31 }.

Each covering {X # 0} is isomorphic to the domain (A —{0}) x Ai([F":Q”]H)HF":Q”Hl (where the

right-most ‘[F}, : Q] + 1" reads {x2(2-)}- and 5(¢), for example), therefore RE’Ord’T’V[l//\} is a domain.

The same proof (with k in place of L) works in the case of RE’Ord’T’V (as the ‘coefficient’ k is, again, a field).

To transfer our calculations so far about RE’ord’T to RE’Ord’+

Firstly, one observes that there is a natural map,

, we shall prove that they are isomorphic.

+ U,ord, t
XGYE,, — Spec R,

which, when followed by the closed immersion Spec RE’Ord’T — Spec RE’+®O A,, factors through X grg —

Ap
Spec RE’+®OAP. It then follows from the universal property of the scheme-theoretic closure Spec RE’Ord’+
that there is a closed immerion

Spec RE7°rd’+ — Spec RE’Ord’T

giving rise to a surjection RE’Ord’T — RE’Ord’Jr.

To prove that the surjection is indeed bijective, we follow the proof of Lemma 4.7.3 in [55] to show
that Spec RE’Ord’T[l/)\] C Spec RE’Ord’+[1//\] (and as a result RE’Ord’T[l/)\] o~ RE’Or(1’+[1/)\]) ‘moduli-
theoretically’ using the equations (I)-(VI) defining RE ordit,

Let (p,a(d),x = (x1,Xx2)) be a closed point of Spec RE’Ord’T defined over a finite extension K of
L = O[1/}]. For simplicity, we write « = a(¢) and 8 = det p(¢)/a($). From (I) and (IV), we may
deduce that the restriction of p to I, is either an extension of K (x2) by K(x1) or an extension of K (x1)
by K(x2)-

Suppose that it is the latter. We may then choose a basis of p to write the restriction of p to I, to

be of the form p|; = (%2 XC ) But it follows from (V) that
1

c(2)0x(z") = x2(27)) = (xa(2) — x2(2))e(z"),

ie.,

((xa/x1)(z") = De(2) = ((xa/x1)(2) = De(z™).
If x; and xo are distinct, x2/x1 is non-trivial and we may therefore see the equality as saying that the
co-cycle ¢ in Hl(Dp, K(x2/x1)) is coboundary, in other words, p is split when restricted to I,. Hence the

X1

0 ; ) , in other words, (p, x) defines a K-point of Spec RE’Ord[l/)\].
2

restriction to I, of p is of the form

0 o
(III), we may deduce that (8~ — 8)(a™ — ) = 0. Hence either (a™,8™) = (a, ) or (a™,8™) = (B, @)

Suppose x1 = x2. With respect to the basis chosen above, suppose that p(¢) = (ﬁ *~>. By

11



holds. By (VI), one can check that the latter occurs only when the restriction of p to I, is split. In any
case, (p, @, x) defines a K-point of Spec REI ord 1 /]

Suppose that x1 and x2 are distinct. It then follows from (VI) that (8~ —a)(x1 —x2) = (B—a)(x1 —
X2). As x1 and x2 are distinct, 8~ = 8, and ™ = « as a result. It therefore follows that (p, «, x) defines
a K-point of Spec RD’OM’Jr [1/)A] and thereby establishes that the surjection RE’Ord’T [1/A] — RE’Ord’+ [1/X]
is indeed an 1som0rphlsm

As RD ordT is flat over O and A thus is not a zero-divisor in RD ord,f , the kernel of the surjection
RD ord, T _> RD ord,+ Oord,t

P P

tion. O

is indeed trivial, i.e., Ry” ~ RpD ordi+ - This concludes our proof of the proposi-

2.3 Local liftings at places not dividing p

Sr: Suppose that Nz/qQ = 1 mod p. Let O be as above. By enlarging O if necessary to assume that
Pikgl—1 C (14 X). Suppose that xq,1,xq.2 : Dq — (1+A) C O* are characters of finite order such that
their reductions mod A are trivial. Write x = xq to mean the pair (xq,1,XQ,2)-

Lemma 10 There exists an ideal Ig X of Rg which corresponds to the liftings p of the trivial represent-
ation pg such that

e the characteristic polynomial of the restriction of p to the inertia subgroup Iq at Q in X is of the
form (X — xq,1(Artq(g)) ™" )(X — xq.2(Artq(9)) ") for every g in Iq;

° Rg/[g’x is flat over O, reduced, Cohen-Macaulay and of equi-dimensional of relative dimension 4
over O;

o Rg/[g’x[l/p] is formally smooth over L;
. R%/(/\,IS’X) is reduced;

e the generic point of every irreducible component ofR /ID’X has characteristic zero.

Furthermore,

e if xq1 and xq,2 are distinct, then RS/IS’X s geometrically irreducible of relative dimension 4 over
O;

o if Xxq,1 and xq,2 are both trivial and if L is sufficiently large, every minimal prime of R(g/()\, IS’X)

contains a unique minimal prime ofR /(A ID X,

Proof. Following the notation of [53], when xq 1 and xq, 2 are distinct, let R /ID X he RU (Pq,T) with
the inertial type 7 given by a representation of Iq sending g in Iq to <XQ’6 (g) X *(g)> and N = 0.
Q2
When xq,1 and xq,2 are both trivial, let Spec RS/IS’X denote the union of Spec RP (Pq»7) where the
inertial types T range over those given by the trivial representation of I with open kernel (when N =0,
it corresponds to the unramified liftings while non-trivial N corresponds to the ‘Steinberg’ liftings).

Firstly, observe that RS / Iq X is flat over O and reduced by definition. Proposition 5.8 in [53] proves
that RS o/ Iq X s Cohen- Macaulay (equi-dimensional of relative dimension 4 over O) and, less explicitly,
Q/I(SI X[l/p] is formally smooth over L.
When xq,1 and xq,2 are distinct, Proposition 5.8 in [53] also proves that RD/()\ ID’X) is reduced.
Furthermore, the proof of Proposition 3.1 in [58] proves that RE / I X is geometrically integral.

When xq1 =xq2=1,as Ais R /IEI (11) -regular, RS o/ (A, ID (1 b ) is Cohen-Macaulay by Theorem
17.3 in [38]. On the other hand the proof of Lemma 3.2 in [58], combmed with the corollary of Theorem

23.9 in [38], establishes that RS o/ (A, ID = 1)) is generically reduced. The reducedness of RQ/()\ ID @ 1))
therefore follows. The last assertlon is proved in Proposition 3.1 in [58]. O

SLZ
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Lemma 11 Suppose Q satisfies Np,qQ =1 mod p. Then there erists an ideal Ig’St of RS, containing

Ig’(l’l) above, which corresponds to the liftings of the trivial representation pg : Dg — GLy(k) such that

e the characteristic polynomial of p when restricted to Iq (resp. p(Frobg) where Frobg, by abuse of
notation, is a lifting of the arithmetic Frobenius) is of the form (X —1)? (resp. (X —|kq|)(X —alkq|)
for some a);

. Rg/lg’st is flat over O, reduced, Cohen-Macaulay and equi-dimensional of relative dimension 4
over O;

. (R%/Ig’St)[l/p] is formally smooth;
° R%/Ig’st is geometrically integral;
e the generic point of Rg/[g’St has characteristic zero.

Proof. This is proved in Proposition 3.1 of [58], Proposition 3.17 in [62] and Proposition 5.8 in [53]
as in the proof of Lemma 10. [

Sa: For every Q in Sa, Rg is formally smooth of relative dimension 4, and let I = (0).

Sq.u:

Lemma 12 Let v > 1 be an integer. Suppose that Q satisfies Np;qQ =1 mod p”. Suppose that pg is
unramified, and is the direct sum of (unramified) characters xq.1,xq2 : Dq — k. Then there exists
an ideal IS of R% which corresponds to the liftings p = xq1 © Xq.,2 of P such that xq. lifts Xq+ for
t=1,2, and xq,2 s unramified.

Proof. See Section 2.4.6 in [13], or Definition 4.1 and Lemma 4.2 in [63]. O

We shall suppose that |Sq .| = ¢ is independent of v. Existence of a such set of ‘Taylor-Wiles primes’
will be stated with a reference in the following.

In the following, let Y, denote the deformation data defined by
o S=SpUSRUSLUSAUS;
e I'=95—-85,;

and the ideals of universal rings for local liftings at T', namely

o IE’Ord’+ for every p in Sp assuming [F}, : Q] > 2;

e a tuple x = (xq = (xQ.,1, Xq,2)) of characters where Q ranges over Sy , and IS’XQ for every Q in
SRr;

° IS’St for every Q in Sy;
. IS = (0) for every Q in Sa (any lifting of pg for Q in Sa is necessarily unramified);

The ideals IS of R(%’ for every Q in S define a subspace Lqg C H'(Dq,adp). When xq is trivial for all
Q in SR, we write X instead.

Let C denote the category as defined in 2.2, [13], with A, in place of O. The functor which sends
an object R of C to the set of T-framed deformations of p of type X, is represented by a complete local
noetherian Ap-algebra Rgx. If T is empty, write it Ry, .

Lemma 13 If p =5 and the projective image of p is isomorphic to PGLo(F5), assume that the kernel

of the projective representation of p does not fix F((s).
For every integer v > 1 there exists a finite set Sq . of Q such that

13



® Np/Q =1 mod p”;
e o at Q is a direct sum of two distinct characters which are unramified;
. ‘SQ,V‘ =4

and if we let ¥, q,., denote the deformation data (SUSq,,,T,...) defined by the ideals of universal rings
for local liftings at T ezactly as in ¥, = (S,T,...), together with I(%' for Q in Sq,. defined as above,

en 1S topotogicatly generatea over yr=4q-— : elements.
then RS is topologicall ted RE° b 2[F : Q] element.

Proof. The proof of Proposition 2.5.9, [13] works verbatim (with n = 2) to constructs the sets Sq_,,
as required. The last assertion follows from Proposition 5. [J

2.4 Hecke algebras

Let Ar denote the ring of adeles of F' and let A% denote its finite part. Let D be the quaternion algebra
over F' ramified exactly at Sp,USs such that |Sp, US| is even. Let G denote the corresponding algebraic
group over F' such that G(F) = D*. Once for all, we fix a maximal order Op of D, and for every finite
place Q not in Si, we fix an isomorphism G(Op,) ~ GL2(OF,). For a finite place Q of F', we shall
let Iw(OF,) denote the subgroup of matrices in GL2(Op,) which reduce mod Q to upper triangular
matrices.

Let x be a set of characters indexed by Sgr such that xq = (xq,1,Xxq,2) for every Q in Sg defines a
character of Iw(Op,) C GL2(OF,), trivial on the subgroup of matrices in GL2(OFr,) which reduce mod
Q to the unipotent matrices.

For an algebraic character A = (Ap 1, Ap2) of A, such that A1 > A; o for every 7 in Sy, let V), be
the O-tensor module

VP@Vr® W

where Vp is the Sp-tensor product @V, with V, = @, SymA*det”* O? where A\, = A;1 — Ar2 and
Yr = A2 for every 7 in Homgq, (F,, L); Vr = @ O(xq) and we let the Sr-product [[Iw(Op,) act by
x; Vi is the Sp-tensor product of the one-dimensional trivial representation of (D ®p Fq)* for Q in Si,
which is given by the the determinant (D ®@r Fq)* — F(y (followed by the trivial character Fy — F))
and corresponds by the Jacquet-Langlands correspondence to the special representation Sp, (Chapter
I, Section 3 in [25]) of the trivial character, which in turn corresponds by the local Langlands corres-
pondence to a two-dimensional reducible local Galois representation with the cyclotomic and the trivial
characters on the diagonal.

For an O-algebra A, let SY(A) denote the space of functions
f1GF)\G(AL) — Vay @0 A.

Let G(AFYT) x [TG(Op,) x [TIw(Op,), where T = Sp U Sg U S, U Sx and where in the first (resp.
second) product Q ranges over Sp U St, U S (resp. Sgr), act on SY(A) by

(Y)(9) = (vspuse ) f(97)

where vs,usy is the projection of v onto the Sp U Sg-components.

Let U = UP be an open compact subgroup of G(AFY") x [[G(Or,) x [[Iw(Op,), where the first
product ranges over Sp U St,USa and the second over Sg, such that Uq is a maximal compact subgroup
of G(Fq) for every Q in St, and such that Uq for every Q in Sg is the subgroup of matrices which reduce
mod the maximal ideal to the identity matrix. In this case, because of the primes in Su, U is sufficiently
small in the sense that, for every ¢ in G(A$), the finite group (U Nt *G(F)t)/OF is {1}.

For integers N > 1 and v > 1, let Sq,, as in the previous section, and define Uy, , n to be a
sufficiently small open compact subgroup of G(A$) as above such that, at every p above p, it reduces
modulo the N-th power of p to the upper triangular unipotent matrices while, at every Q in Sq ., reduces
mod Q to the upper triangular matrices. We also define Us,,,,~ to be the subgroup of Ulwg,,,~n that is
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identical to Uy, ,,n away from the primes in Sq,, but, for every Q in Sq ., Us,, v N GL2 (Fq) consists
of all matrices in Ulwg, ,~v N GL2(Fq) C GL2(OF,) whose right-bottom entries reduce mod Q to the
elements of (Op/Q)* that map trivially when passing to the maximal pro-p-quotient Aq of (Or/Q)*.
In other words, Us,, ,,n is defined such that Uty , . n/Usq, N =~ HQ Aq where Q ranges over Sq .

When Sq,, is empty, we shall write Uy. By slight abuse of notation, the N-direct limit of Us, , n
(resp. Utwg,,,~n) will be denoted by Us,,, (resp. Uy, )-

Let SY(U, A) denote the set f € SY(A) such that vf = f for every v € U.

Definition. When xq is trivial, i.e., xq,1 and xq,2 are both trivial, for every Q in Sg, in which case
we will often say yx is trivial, we in particular write Sx(U, A). If, on the other hand, xq1 and xq,2 are
distinct for all Q in Sg, we say that xq is distinct. We only need these two extreme cases.

For Q not in Sp U Sg U SL, U S, A[Ug\GL2(Fq)/Uq| acts on SY(U, A): for g in GLy(Fg), if
[UqgUq] = ]_[,y ~Uq, define the Hecke operator corresponding to g by Z,y ~f. Let Tq (resp. Sq) denote

the Hecke operator corresponding to (ﬂOQ (1)> (resp. (W(;Q WO )) where 7q is a uniformiser of Op,.
Q

For U = Uy or Us,,, N, SX(U, A) comes equipped with the Hecke operator U, (resp. S,) for every

p in Sp, corresponding to the matrix ( 0 (resp. ™ 0
0 1 0
product over 7 in X, of 7(m,) 27 (resp. T(mp)”PrtA27)) The normalisation is in common with

[26] for example. It also has action of S, (this is denoted by (7) in Definition 2.3.1 of[23], but we save

)) but normalised by multiplying the

X
() for another operator) corresponding an element 7 in the diagonal torus T'(O,) = (Oop O%() for

every p in Sp. If 7 is a tuple (7;,),, of 7, in T'(O,) for every p in Sp, let S; denote the product of S-, over p.
When U = Uy or Us,,, ~, we follow Geraghty Definition 2.6.2 in [23] to define
() =~7"8-,
where v, = [, vrp and y7,p = 7p,2 for 7y = (73,1, 7p,2) in T(Oy) for every p.

Let Th s, ., (Usq., N, A) denote the Hecke algebra generated by the images in End(SX (Us,,,,~,A))
of Ty and Sq for Q not in SUSq ., Uy for p in Sp, and S; for 7 € T. When Sq , is empty, we shall
write T)"Zx (UN7 A)

When A = O, we will not make references to A henceforth. When A;; = A; 2 = 0 for every 7 in S}
and p in Sp, write 2 in place of A.

Section 2.4 of [23] defines the ‘Hida’ idempotent e on S} (Us,, ,.~), Sx (Usq., .~ L/O),and Tx 5, , (Usq., N ),
and define

SX70rd<UEQ,V)
(resp. SX’Ord(UEQYU,L/O))

to be the N-direct limit of eS3 (Us,,, n) (resp. €Sy (Us,, N, L/O)); and

d
T35 ., Usq,)

to be the N-inverse limit of eIy 55, , (Usq,,n). When Sq,, is empty, we shall write SX-0*4(U), §x-°r4(U, L/O)
and Tg;d(U) respectively. Naturally, Tg)’:’gdv (Usg,,) and Sx°14(Us,, ) are algebras over A,, and hence
over A, by ().

Lemma 14 D Tgid(U ) is reduced.
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. Tgid(U) is a finite faithful A-module, SX°*4(U) is a faithful Tgid(U) -module and is finite free over
A.

Proof. The first assertion follows from Lemma 2.4.4 in [23]. The second assertion follows from Pro-
position 2.5.3 and Proposition 2.5.4 in [23]. O

Let m be a maximal ideal of Tgid(U) when y is trivial. Since S°'4(U)/\ = SX°r4(U) /A, it induces a
maximal m, C Tg;d(U). Let my.q,, C TgidQ(Ung) be the maximal ideal defined by the surjection

T2, (Usq,) = T(U).

Define Hy,_,,(Us,, ), also denoted by Hs_,, ,, by letting

(HZX,Q,V)V - SX’Ole(UEQTV?L/O)V

My, Qv

(where by the dual V we mean the ‘Pontrjagin dual’ Homp(—,L/O)) as in section 4.2 of [23], let
Hs, ., (Ulwg,) denote the one defined similarly with Uy, in place of Us,,,and let

Tx C End(Hyx

xX,Q,v x,Q,u)

denote the image of TEOTQ,U (Usq.,) inEnd(Hs, ). When Sq , = &, we simply write Tx;, and Hyx,

My, Q,v

for Ty, ., and Hy,_, . Let HZDX,Q,V =Hsy ., ®REX,Q,U R‘gx,a,u; when Sq , = @, we simply write it HZD)X'

Recall that Ui, /Usg, is isomorphic to the [[5 Aq where Q ranges over Sq,, and where Aq
is the maximal pro-p quotient of (Op/Q)* for every Q. Let Aq, denote the quotient (Uryg, N

AF)OL/(Usq, NAZX)Or =~ ([1g Aq)/Op by the image O of the units O.

Lemma 15 The co-invariants of Hs, ,(Us,,) by O[Aq,] is isomorphic to Hs, ,,(Utw,,) by the
trace map corresponding to Uy, ,/Us,,, and Hs, ,, = Hs, ,(Us,,) is a finite faithful and free
module over A[Aq ).

Proof. For a sufficiently small open compact subgroup U of G(A),

GAy) =[J et

holds, where ¢ ranges over a finitely many representatives in G(A); and (t7'G(F)tNU)/O} is trivial.
For an O-module A, it therefore follows that

53 (U, A) = @(sz 20 )L GENNU.

t

The first assertion follows if the co-invariants S¥ (Us,,, ,n,0)aq,, is isomorphic to S5 (Utwg,., v, O)-
This, in turn, follows (by the standard duality pairing and Pontryagin duality) if the invariants S5 (Us,, , .~ , L/O)
is isomorphic to S¥(Utwg,, ,n:L/O). As the order of t'G(F)t N Uy, ,n and the order of Aq, =

(Il AQ)/G; are coprime, this holds.
To prove the second assertion, it is enough to prove [SX(Usq , v, L)||Aq,| = S5 (Utwq.,.~:L)| by
Nakayama’s lemma. But this follows as one observes, as Uy, ,,~ is sufficiently small,

AqQ,v

71G(F)tlﬁlU1 N
X ~ wQv»
Sy (UIWQ,uJ\” L)~ @ Vo

t

and therefore

tT G(F)tNULyy . N
X ~ Qv
Sy (UEQ,wN’L) - @ @ VQX

t Aquw

as the order of Aq, and t *G(F)tN Ulwg,, N are coprime. [
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Let AU = AQRY where T = Sp U Sg U S, US4 and let Aq o be the free Z,-module (I, Zp)/6; of
rank ¢ —rkOp > ¢ — ([F : Q] — 1) by Dirichlet’s unit theorem, which surjects onto Aqw = ([Iq AQ)/lem
for every v. Let J denote the kernel of the homomorphism AY[[Aq o.]] = A which sends Aq o to 1
and all 4|T| — 1 variables in RF to 0. Let R® = Rlzoi[[Xl, ..ey X;]]. Following Geragthy 4.3, [23], the

Yy ,00

HEDX,Q,V patch together to yield a RIZO)‘E,OO®AD[[AQ7OO]]-module HEDX’OO.
Lemma 16 Let A be a minimal ideal of A.

e Ifx is distinct, Spf R%’; ®@A/A is O-flat and geometrically irreducible of relative dimension 14+2[F :
Q| + e, +4|T).

e If x is trivial and if L is sufficiently large, Spf R® @ A/A is equi-dimensional of relative dimen-
sion 14 2[F : Q] + er, + 4|T|; furthermore, every minimal prime of RS ® A/(A\, ) contains a
unique minimal prime of RIEOC ® A/A. Furthermore, RIEOC 1s O-flat, Cohen-Macaulay and RIZOC//\ 18
generically reduced.

Proof. See Lemma 4.12 in [23] and Lemma 3.3 [3]. When x is trivial and K is sufficiently large, it
follows from Lemma 3.3 in [3] that every prime, minimal amongst those containing A, contains a unique
minimal prime.

It follows from Proposition 9, Proposition 10 and Proposition 11 that Rlzoc ® A is Cohen-Macaulay.
Lemma 1.4 in [62] establishes that the fibres RIS¢/) is generically reduced. O

Remark. The Cohen-Macaulayness of Rlzofoo is critical to our proof of Ry ~ Ts without recourse to
taking the reduced quotients. This is based on Snowden’s insight in [55].

Lemma 17 As Rlzoi,oo/)\ ~ RRC_/A-modules, ng,m/A o~ HZD’OO/)\ holds. Furthermore, 1‘[2':;’Oo (resp.

HED,oo) 18 a finite free module over AD[[AQ@O]] (resp. AD[[AQ’OOH) (and hence are finitely generated
RIEO;OO-mOdUZCS); and ng,oo/J ~ Hy,and HED,OO/J ~ Hs, holds respectively.

Proof. See Proposition 2.5.3 and Corollary 2.5.4 in [23] O

The following is a summary of Geraghty’s results [23] about Hida theory that we shall implicitly use;
their proofs can be found in [23]. See Proposition 3.4.4 in [13], Lemma 2.6.4, Proposition 2.7.4, and
Lemma 4.2.2 in [23] for example.

If A: A — O* is an algebraic character defined by the set A = (Ap1,Ap2) of integers, and if a
character v : A — O is of finite order, we shall let I'y , denote the ideal ker(y(—A2, —A1 — 1)) of A
where (—A2, —A; — 1) denote the character A, — O* defined by the product of (—A; 2, —Ar1 — 1) over
7 in Sy for all p in Sp.

If kery contains the product over p of ker(T(Oy) — T(O,/p™)) for an integer N > 1, the quotient
Tgid R AFAW /T'x,~ surjects onto the maximal quotient of T’ ffgx(UN) where S, operates as 7, for every
7 in T¢; furthermore, the kernel of the surjection is nilpotent.

There exists a continuous representation

P =Py Gal(F/F) — GLy(Ts, ., /My.qu)

such that

e 7 is unramified outside .S, and
trp(Frobg) = Tq

and
detp(Frobg) = (Np/qQ)Sq

for every Q not in S,
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e for every place Q in Sg, the characteristic polynomial in X of the restriction of p(g) is of the form
(X = xq1(Artq(g)) " ")(X — xq2(Artq(g)) ") for every g in Iq.

e for every place Q in Sp, the characteristic polynomial of p(Frobqg) (resp. p(g)) is of the form
(X — |kq|)(X — alkq]) for some « (resp. (X — 1)?) for a Frobenius lifting Frobq (resp. for every g
in IQ),

e 7 is unramified at every place in Sh.
e p is a direct sum of two distinct unramified characters when restricted to every place of Sq ..

Suppose that m, is non-Eisenstein. There exists a continuous representation

P =Py g Gal(F/F) — GLQ(TEX,Q’V)

for which the following hold:
e p is a conjugate lifting of p of type Xy q...

e Suppose Sq,, = &. The maximal ideal m, uniquely determines an irreducible component of Spec A,
over which it lies, and the component is characterised by a character of the torsion subgroup of A.
Suppose that v equals —(Ap 2, Ap.1), When restricted to the torsion subgroup. If I' is a dimension
one prime ideal of 7%, lying above I'y ,,

Pm, T * Gal(F/F) — GLQ(LF),
where Lr denote the field of fractions of T /T, satisfies:

— for every p in Sp, the restriction py, rp of pm . r to D, is de Rham/potentially semi-stable
with Hodge-Tate weights (Ar1 4+ 1, Ar2)+;
fl,p *
0 67152?‘3
character of Oy, is given by ((—Ar2) o 7), (resp. ((—Ar1)o07)r ); and &1 0 Arty(mp) = Uy
mod I, and & o Artp(my) = Sy /Uy mod T.

— Pm,,I,p is reducible of the form ( ) where &, o Art, (resp. &, 0 Arty), as a

In applications, we consider I' corresponding to A; 1 — Ay 2 = —1 for 7 in S, for every p in Sp.

25 R=T

Suppose that p as in the previous section is modular, i.e., p ~ p,, for a non-Eisenstein maximal ideal
m C T24(U).

Theorem 18 Hgoo is a (Cohen-Macaulay) faithful Rlé’foo-module,

Proof. For every minimal prime A of A, the Krull-dimension of R}f;oo /A, for a distinct y, is

1+T+(1+2[F:Q}+6L)+4|SPUSRUSLUSA|
= 14+ (q—2[F:Q])+ (1 +2[F:Q]+eL)+4|Sp USrUSL US4

On the other hand, the RR° -depth of HY /A is at least the AP[[Aq o]]-depth of HY /A, As

HZDX’OO/A is free as a AY[[Aq.oo]]-module, the latter depth equals the Krull-dimension of AP[[Aq o]
which is greater than or equal to

1+ (1+[F:Q]+eL)+4[Sp USRUSLUSA| —1+q—([F:Q]—1).

Since Spec RIZO;OO/A is irreducible, it then follows from Lemma 2.3 in [58] that HZDXM/A is a nearly
faithful Rli‘é,oo/A—module. By Lemma 2.2, 1, [58], HZDX,OO/(A,/\) is a nearly faithful Rlzoi’oo/(A,)\)—
module, hence HEE"OO /A is a nearly faithful Rlzofoo /A-module. It then follows from Lemma 2.2, 2, [58],
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that HE /A is a nearly faithful RIEOCOO /A-module. As this holds for any minimal prime A, one concludes
that Hz oo 18 a nearly faithful RIOC -module.

On the other hand, one may observe that p and the generators of J define a system of parameters of
RYS,/A. Since RS / A\ is Cohen-Macaulay, it follows from Theorem 17.4 in [38] that it indeed defines
a regular sequence of the noetherian local ring. In particular, p is Rl"C "o/ D-regular. It therefore follows
from Lemma 16 that RIZOCOO (A, A) is Cohen-Macaulay and that Rloc (A, ) is reduced. The regularity
also establishes that RloC >/ A is reduced and, by extension, RlocOC is reduced. The faithfulness of Hy o
as an Rlzofoo—rnodule follows O

By the theorem above, Hgoo /J ~ Hs is a nearly faithful RR_/J-module. Hence the maximal
reduced quotient of Ry is isomorphic to Tx. To promote this isomorphism on the reduced quotients
to the isomorphism Ry =~ T%, it suffices to prove that Ry itself is also reduced. In achieving the
reducedness, the key input is Snowden’s insight in [55] (Section 5 to be more precise), i.e. by establishing
that Rl"C >~ Ry o is Cohen-Macaulay and, by extension, Rlz?coo /J is Cohen-Macaulay and O-flat.

As the preceding theorem proves that RloC "o/J is isomorphic to Ry, it is enough to establish that
ng,"oo /J, or equivalently Rlzofoo /(A J) is reduced for every minimal prime A. To this end, we need a
lemma which paraphrases Lemma 8.5 in [28]:

Lemma 19 Let R be a noetherian local ring and let M be a faithful, Cohen-Macaulay, finitely generated
R-module. Letr,r1,...,rN be a system of parameters of R, let J denote the ideal generated by r1,...,TNn
and let R=R/J and M = M ®g R/J. Suppose that

e M[1/r] is a semi-simple R[1/r]-module,

e for every prime ideal B in R[1/r] which is the pre-image of a mazimal ideal m that lies in
Suppgy /(M [1/7]), the localisation R[1/r|y is regular.

Then R[1/r] is reduced.

Proof of the lemma. Since M is a finitely generated Cohen-Macaulay module over R, for a prime 3
as in the second assumption, M[1/r]y is a finitely generated Cohen-Macaulay module over R[1/r]y. It
then follows from Auslander-Buchsbaum that M[1/r]y is finite free over R[1/r]q; in particular, M[1/r]m
is finite free over R[1/r]y. One may then deduce from the semi-simplicity assumption that the Jacobson
radical of R[1/r]y is zero, and therefore the nilradical of R[1/7]y is zero.

On the other hand, M is assumed to be faithful over R, and therefore M[1/r] is nearly faithful over
R[1/r], or equivalently, SuPPR(1 /1) (M[1/r]) = Spec R[1/r]. As R[1/r] is aritinian, Spec R[1/r] equals the

maximum spectrum Max R[1/r] and an isomorphism
R[1/r] H R[1/7]m

where m ranges over Max R[1/r] = SUPPR /41 (M[1/r]), holds. As each R[1/r]y is reduced, the assertion
follows. [J

Corollary 20 Ry ~ T

Proof. For a minimal ideal I" of RIOC (A, J,p), we apply Lemma 19 to the localisation (RloC /O)r of

RS, /A at T to establish that (RS, (A, J))r[1/p] is reduced. It therefore follows that RGS /(A J)[1/p]
is generlcally reduced. As it is Cohen-Macaulay by Lemma 16 (and Theorem 2.1.3 in [7]), it is indeed
reduced. To promote the reducedness of RIEOCOO (A, J)[1/p] to the reducedness of RIOC (A, J), it suffices

to establish that R%S_/(A,.J) is p-torsion free so that RYS_/(A,.J) embeds into RIOC (A, J)[1/p]. But
since RIOC VAT noetherian local, p is RIOC (A, J)- regular and the p-torsion freeness follows. OJ
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3 Models of Hilbert modular varieties

3.1 Pappas-Rapoport integral models

Let F' be a totally real field with [F' : Q] = d and let Op denote the ring of integers. Let D = Dp/q
denote the different of F. Fix an embedding Q < Q,, once for all.

For every place p of F' above p , we shall denote the completion of F' at p by F},, its ring of integers by
Oy, and a uniformiser m, (or 7 when the reference to p is clear from the context); denote the ramification
index by e, (or e when the reference to p is clear from the context) and the residue degree by f,,. Let
F'p denote the maximal unramified extension of Q, in Fy; and let E € F’p [u] denote the Eisenstein
polynomial in u defining the totally ramified extension F, over F}, of degree e,,.

Let L be a finite extension of Q, which contains the image of every embedding of F' — Q<= Qp;
and let O denote its ring of integers and let k denote the residue field.

For every place p of F' above p, we shall let ¥, denote Homgq, (F}, L) and let ip denote Homgq, (Fp, L).
For every 7 € ilp, let ZA)pyT denote the set of elements in X, whose restriction to Fp is 7, and we fix, once
for all, a bijection between X, » and the set of integers between 1 and e,; if we let E. € L[u] denote the
image of E by 7 for 7 € f]p, it mean that we order (and fix) the roots of E, in L.

For every place p of F' above p and 7 in ip, let 4L, for every 1 < ¢ < ey, be the image of 7, by the
element of X, ; corresponding to ¢; and let E.(t) be the polynomial (u —~L)(u —~L ) (u—~7") inu
with coeflicients in O (and hence in Og for any O-scheme S).

Let V = F? and let (, ) denote the standard non-generate alternating bilinear pairing on V. Let
B = F thought of coming equipped with identity ‘involution’. Define the closed algebraic subgroup G
over Q of GLp(V) = Resp/qGLz as in 6.1 in [46].

Let U be an open compact subgroup of G(A*>) such that U N G(Q,) = G(Z,). Indeed we suppose
that U is the principal congruence subgroup mod n of G(A*), and suppose that n > 3 and is prime to

p.

Fix, once for all, a set of representatives ¢ € A} for the strict ideal class group A%/F* (O ®z
Z")*(F ®q R)} of F'; by abuse of notation, let £ also denote the corresponding fractional ideal of F.
By ‘1’ we shall always mean ‘the subgroup of its totally positive elements’.

For every (fixed) representative ¢, define Mg}z to be the functor which sends an O-scheme S to the
set of isomorphism classes of data (A, i, \,n) consisting of

e an abelian scheme A/S of relative dimension d = [F : Q]
® i OF — El’ld(A/S)

e an Op-linear morphism of étale sheaves A : (¢,£,) — (Sym(A/S),Pol(A/S)) which is indeed an
isomorphism, and by which the natural morphism A ® Sym(A4/S) — AV is also an isomorphism
(note that these are equivalent to the condition Deligne-Pappas defines: a homomorphism (¢, £4) —
(Sym(A/S),Pol(A/S)) of Op-modules such that the composite A ® £ — A ® Sym(A/S) — AV is
an isomorphism);

e an Op-linear isomorphism A[n] ~ Of ®z (Z/nZ).

The functor is representable by a scheme over O which we shall denote by Y[})}); it follows from local

—DP
model theory that its fibre Y, , over Speck is smooth outside a codimension 2 closed subscheme. The
main result of this section is to construct an integral model over O which is smooth over O (and hence
its fibre over & is smooth).
For every £ as above, define My} to be the functor which sends an O-scheme S to the set of
isomorphism classes of data (4,14, A,n) where
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e (A,i, A\, n) define a S-valued point of MB?

e For every place p of F' above p and every 7 € XAJ,M the 7-component Lie"(AY/S), of the Og-dual
Lie¥(AY/S) of the sheaf Lie(AY/S) of Lie algebras of the dual abelian variety A over S, comes
equipped with a filtration

0 = LieY(AY/9),(0) C Lie"(AY/S).(1) C --- C Lie¥(AY/S),(ep) = LieV(AY/S), C Hig(A/S)Y

such that LieY(AY/S),(t) is, Zariski locally on S, a direct summand of Lie"(AY/S), of rank ¢
and is a sheaf of O, ®, Og-submodule (where ® is meant over F}) of LieY(AY/S),, satisfying the
condition

(mp ®1—1®~%)Lie"(AY/9),(t) C Lie"(AY/9),(t — 1).

For every 7 € f]p and every 1 <t < ey, let
GrV(AV/S)T(t) = Liev(AV/S)T(t)/LieV(AV/S)T(t - 1),

and let
Gr¥(A/S), (1) = Hig(A/S)Y /Lic" (AY/S),(t - 1);

the former (resp. the latter) is a locally free sheaf of Og-modules of rank 1 (resp. 2e, — (t — 1)).
Let
D(A/S)+(t) = ker(E(t) | Gr¥ (A/S)+ (1))

and
D(A/S)-(t) =ker(r @1 — 1@~ | D(A/S).(t)) = ker(r ® 1 — 1 @~L| Gr¥ (4/S).(t)).

We know the ranks of these Og-modules:

Lemma 21 For every T € ip and for every 1 <t < ey,

e D(A/S),(t) is a locally free sheaf of Oglu]/E(t)-modules of rank 2 and is also a locally free sheaf
of Og-modules of rank 2(e, —t+1);

o D(A/S)(t) is a locally free sheaf of Og-modules of rank 2.

Proof. This is essentially Proposition 5.2 (b) of [42] with d = 2. O

Lemma 22 For every 7 € 3, and every 1 <t < e,, Gr¥(AY/S),(t) is locally a rank 1 direct summand
of D(A/S),(t) as an Og-module.

Proof. Since this is not proved in [42], we shall give a complete proof. By definition, Gr¥(AY/S),(t) is
a subsheaf of Og-modules of D(A/S),(t). It suffices to prove that the quotient D(A/S),(t)/Gr"(AY/S).(t)
is locally free of rank 1. Consider the exact sequence

0 — D(A/S),(t)/Gr¥(AY/9)(t) — Grv(A/S)T(t)/Grv(AV/S)T(t) — GrV(A/S)T(t)/D(A/S)T(t) — 0.
Firstly observe that the middle term
Grv(A/S)T(t)/GrV(AV/S)T(t) ~ GrV(A/S)T(t +1),

and it is locally free of rank 2e, — t; hence it suffices to show that Gr¥(A4/S),(t)/D(A/S).(t) is locally
free of rank 2e, — (t 4 1). The preceding lemma asserts that D(A/S).(t) is locally a direct summand of
D(A/S).(t) with the quotient D(A/S).(t)/D(A/S),(t) locally free of rank 2(e, —t +1) —2 = 2(e, — ).
It is proved in the proof of Proposition 5.2 in [42] that D(A/S),(t) is locally a direct summand of
GrY(A/S),(t) with the quotient Gr¥(A4/S),(t)/D(A/S).(t) locally free of rank t—1. Hence the quotient
GrY(A/S)-(t)/D(A/S).(t) is locally free of rank 2(e, — t) + (t — 1) = 2e, — (¢ + 1), as desired. O]

Proposition 23 The functor ME% is representable by a smooth scheme, which we shall henceforth
denote by Y(E?, over O. Furthermore, the forgetful morphism, YI})’? — YLE’E s proper.
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Proof. Representability: Define Mgf[ to be the functor which sends an O-scheme S to the set of
isomorphism classes of data as in ME’I}, except that it ‘forgets’ the last condition about the prescribed
action of Op; then Mgfz — MBE, forgetting filtrations, is clearly relatively representable and proper,
hence Mgre is representable. The relative representability of Mg’% — MS’Q follows from Lemma 1.3.4
in [34], for example.

Smoothness: YZE ? is locally of finite presentation, and it suffices to show its formal smoothness in the
following sense. Choose a closed point of Y[E 5“, and let RE}} denote the completed local ring of Y[E ? at
the closed point and M, UP}Z} its maxim ideal. Let Mgi’/\ denote the ‘local formal moduli’ functor Spf RE}},
and let R be a complete noetherian local ring with maximal ideal M such that R/M ~ RET} /M[F]”P}. It

suffices to prove that
PR, PR,A /G
MU,[A(S) — My, "(9),

induced by S def Spec R/M'=1 — § def Spec R/M' for an integer [ > 2 which we fix, is surjective. We
shall show this by the Grothendieck-Messing crystalline Dieudonne theory.

Let (A/S,i,\,n, (Liev(zv/g)f(l) Cc---C Liev(Zv/g)T)) be a point of ME}} over S. Then, for every
T, GrV(ZV /9)+(t) is locally a Og-direct summand of the locally free sheaf D(A/S),(t) of Og-modules
of rank 2 by the preceding lemma.

Let 7% be a lifting in Og of % in Og. The Og-dual H}(A/S)Y of the crystalline cohomology sheaf
of Og-module is a locally free sheaf of O ® Og-modules of rank 2, and ker(r ® 1 — 1 ®@~L | HL(A/S)Y)
defines a locally free sheaf of Og-modules of rank 2 which lifts D(A/S),(1). It then follows that there
exists a locally free subsheaf Lie" (A" /S),(1) of ker(r ® 1 — 1 ® v1 | HL (A/S)Y) of rank 1 which lifts
LieV(A"/5).(1).

Suppose, for 1 < < t, that every Lie" (Z\//S)T(l)7 locally free of rank I over S, lifts Lie" (ZV/E)T(D
and which satisfy Gr¥(4" /S),(I) C ker(r® 1 — 1 ®+L | HL(A/S)Y /Lie¥ (A" /8),(1— 1)) for 1 <1< t.

One may and will define Lie" (ZV/S)T(H— 1) to be a rank t+1 locally free Og-submodule of H:.(A/S)Y
satisfying the condition that its quotient Lie" (Xv /9)+(t + 1)/Lie’ (Zv /S)+(t) defines a rank 1 direct
summand of ker(r ® 1 — 1 ® v41 | HL (A/S)Y /Lie¥ (A/S),(t)) which is an Og-module of rank 2 lifting
D(A/S)-(t+1).

It then follows from the Grothendieck-Messing crystalline Dieudonné deformation theory that there
exists a Hilbert-Blumenthal abelian variety A over S whose pull-back to S'is (A/S, i) and Lie" (AY/S), x 5
S ~ Lie” (Zv /S), for every 7. Evidently, Lie(A/S) satisfies that the Kottwitz ‘determinant’ condition
(Definition 2.4 in [64]), and it follows from Corollary 2.10 of Vollaard [64] that A lifts over to S. O

Let YR denote the disjoint union Y[E R over /.

Let P denote the product of all prime ideals of O above p. For a representative /, let fyz denote the
element (or its corresponding fractional ideal) in the fix set of representatives representing the fractional
ideal #3.

Define Mgf)w,e to be the functor which sends an O-scheme S to the set of isomorphism classes of
Op-linear isogenies

f:A/S— B/S
of degree |Op /9| such that ker f C A[B], where A and B come equipped with PEL structure defin-
ing S-points of Y[]]:?f and YUD,Z: respectively such that (fV o Sym(B/S) o f, f¥ o Pol(B/S) o f) equals
(PSym(A/S),PBPol(A/S)). One can check that the last condition is equivalent to demanding that
C = ker f is an isotropic subgroup of A[3] in the sense that, for any A in Sym(A/S) (in fact, it suffices

for any A of degree prime to p), A maps C to (A[B]/C)V. The functor is representable by an O-scheme
Yt e

Similarly, we define M, , to be the functor which sends an O-scheme S to the set of isomorphism

classes of Op-linear isogenies f : A/S — B/S of degree |Op/%B| such that ker f C A[P] defining an
S-point of Y[PI‘P;I, where A and B are respectively S-points of Y(E R and Y(E Zﬁ such that the filtrations
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commutes the diagram of locally free Og-sheaves:

Hiy(A/S); — Hix(B/S)- — Hix(A/S):
LieV(jv /S), — LieV(gv /S), — Liev(/LlJV /S),
LieV<AVH/S>T<ep> — LieV<BVH/S>T<ep> — LieV<AVH/S>T<ep>
Lie" (A /E)T(ep ~1) — Lie¥(BY /g)f(ep ~1) — LieY(4Y /;)T(e,, ~1)
U U U
U 0 0

Lie¥(AY/S). (1) —  Lie"(BY/9),(1) —  Lie¥(A4Y/S).(1)

If we let C = [[,Cy, C A[B] = [], Alp] denote the kernel of w : A/S — B/S, one can see that
Lie¥(CV/S) comes equipped with a filtration

0 = Lie¥ (CY/8)+(0) C Lie¥(CV/S),(1) C - - C LieV (C¥/8),(e,) = Lie¥ (CV/S),

defined by coker(Lie"(AY/S),(t)/Lie"(AY/S).(t —1) — Lie"(B"/S),(t)/Lie" (B /S)-(t — 1)) for every
pin Sp, 7in X, and 1 <t < ep; and each Lie”(CV/9),(t)/Lie”(CV/S).(t — 1) is killed by m,.

Proposition 24 The functor /\/lglf‘wl is representable by an O-scheme.
Proof. 1t is clear that ME?W)Z is relatively representable over MB}DW,Z. O

Let Y(})IF‘}M denote the O-scheme representing MB?w,e in the proposition and let Y denote the
disjoint union of Y[})I%,) ¢, over £ ranging over the fixed set of representatives as before.

As the definition of YI}P R and YgIFV{V are based on the local model constructions of Pappas-Rapoport
[42], it is clear what their local models should be.

3.2 Compactification

Fix a representative ¢; we shall compactify Y[E R and YI})I%V’Z following Rapoport’s [45] and Stroh’s [506]
observations. Fix the integer n > 3 defined in the previous section.
By a f-cusp degeneration data C, we shall mean two fractional ideals M and N of F', an exact sequence

0D 'M'5L—-N=0

of projective Op-modules, and an isomorphism M N ~! ~ D; suppose furthermore that it comes equipped
with a choice of an isomorphism L/nL ~ (Op/nOFr)?.

Given an f-cusp degeneration data C as above, let MT = MN, M}t = n~'M* and M+V =
Homgz (M™,Z); let M;{\i denote the submodule of the positive elements in M ® R where its pos-
itivity is defined via the isomorphism MTY ~ ¢M~2D~! and the positivity of each of the fractional
ideals on the RHS.

Let ¥ denote a rational polyhedral cone decomposition {7} of Mg\g_ U {0}; we may and will choose
it so that it is level-n-admissible in the sense that it satisfies the conditions of 3.2 and 3.3 of [12] (see p.
299 of [45]). Let Sy = Spec R with R = O[M,f], and let S; < Sy, = Spec R, denote the affine torus
embedding where R, = O[M,F Nn7V].

As Stroh [56] puts it, we may think of Sy as a moduli space (stack) of Deligne 1-motives corresponding
to an f-cusp degeneration data C: let X = Spec A be a normal scheme, Y an open dense subscheme,
and Z = X —Y = Spec A/I for an ideal I of A. In our context, a Mumford 1-motive over (Y — X)
in the sense of Stroh is a set of data: the semiabelian variety G =Gz DM thought of as it is
defined over X (where G is the multiplicative group scheme base-changed over to F), a ‘lattice’ N over
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X (i.e. alocally constant étale sheaf of finite free abelian groups), and a complex ¢ : N — G of fppf
sheaves of abelian groups over Y defined by an Op-linear homomorphism N — G(Y') whose induced
homomorphism trp,q o q: M+t — G(Y) maps Mi to I.

Let Spf R, denote the affine formal completion of S¢ » along S¢, —Se. Let X, . = Spec RT, let Yo -
denote its open dense subscheme defined by the pull-back of X, , over S, along Sy — Se -, and let Z; ,
denote the complement X, , — Yy -.

Rapoport’s application [45] of the Mumford construction (in the ‘split case’) gives rise to a semi-
abelian scheme

(Goz DM /gY
over X, . such that

e the pull-back to Y, . of (G ®z D™'M~1)/¢" is a HBAV (see (i) and (ii) of [45], p.297) which is
{-polarisable (see (v) and (vi) in [45], p.298) which comes equipped with a level n-structure (see
(iii) and (iv) in [45], p.297-p.298), and whose dual Lie algebra ‘sheaf’ M comes equipped with a
canonical PR-filtration in the sense of Section 3.1 (and gives rise to a map from Y; » to Y,E By,

e if A denote the universal HBAV over Y}, the p-torsion of (G @z DM ") /¢" over Y ;, i.e., the

pull-back to Yy, of (G ®z D~'M~1)/¢", is canonically isomorphic to the p-torsion of the fibre
product of A and Yy, over Ygf‘.

Definition. Suppose that (G®z D~1M~1)/¢") over Y, , comes equipped with a Raynaud submod-
ule scheme C, of ((G ®z D~'M~1)/¢™)[p] of rank 1 for all p in Sp. Let Sp x and Sp .+ be subsets of
Sp defined such that p lies in Sp  if C, is multiplicative while it lies in Sp ¢ if it is étale; in which case
Sp,x and Sp ¢ are disjoint and their union is Sp.

Definition Let St denote the disjoint union over all partitions (Sp,x, Spet) of Sp of Sy; and define
Xi1,r and Y7, similarly.

Let Spec R denote the henselisation of (S;r,Srr — S;). Then it follows exactly as in Proposition
2.3.3.1 in [56] that there exists semi-abelian scheme ((G ®z D~'M~1)/¢"V)T which is ‘as universal’ as
(G ®z D™*M~1)/¢" is. It furthermore follows as in 2.4 in [56] that there exists an étale extension
R¢ over R, and a semi-abelian scheme ((G ®z D1M~1)/¢™)¢* which satisfies the same properties as
(Gez D*M~1Y)/¢N with (G ®z D™1M~1)/¢" )¢ in place of (G @z D~1M~1)/qV.

Definition. Let X{}  denote the pull-back to Si, , of X{* over Sy, along the natural forgetful map
from St - to Spr. Similarly define Yfzr to be the pull-back to Sy, of Yfi over Sy along St, — Sy.

Definition. Let Y3 = [[. ][, Y% and X7% = [[. ][, X7’ where C ranges over the set of isomorph-
ism classes (i.e. homotheties of ideals) of ¢-cusp degeneration data and where 7 ranges over ¥ with C
given. Define X7 5 and Y/ 5 similarly.

Lemma 25 The quotient algebraic stack of Yi's, by R = Y4 xypr Y5, is isomorphic to Y7t Similarly,

the quotient algebraic stack of YI%’E by R1 = YI%’E XyER Yfzz is isomorphic to Y(E)IIV{V,Z'

Recall that Y(E % is smooth over O, and Y(E)IE;{V, ¢ is normal. The second assertion can be checked by its
local model.

Definition Let X 5}} denote the quotient algebraic stack of X%, by the normalisation of X x X%,
in R.

Let X1, , denote the quotient algebraic stack of X7 5, by the normalisation of X{% 5, x X{/ y in Rr.

Proposition 26 Xg% and Xg%v ¢ are proper over O.
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Proof. See Proposition 3.1.5.2 and Théoréme 3.1.8.3 in [56]. O

Recall that U is the full congruence subgroup of level n for an integer n > 3 prime to p.
Let Ox , denote the totally positive units in F' and Or. 4., denote the subgroup of the squares of
elements in OF, i.e., units, congruent to 1 mod n.

As explained more carefully in Section 2 in [17], observe that Of , acts (and O , , acts trivially)

X

on /(-polarisations, hence acts on XJ%® and on XFE, ,. Let O;: =05 ,/Op

2 in [17] explains that GLy(Op ®z Z) acts on Xp% and X(1, .

Furthermore, Section

Definition. Let K denote the preimage in GLy(Op ®z Z) = (ResF/QGLg)(Z) of (3 ;) C

(Resp/QGL2)(Z/nZ) by the reduction mod n map (ResF/QGLg)(Z) — (Resp/QGL2)(Z/nZ) and let
XFPR (vesp. XER ) denote the disjoint union over ¢ of X}?} = XE% (O;I x K) (resp. XIP;}I{w,é =
XE%M (O;i x K)). We similarly define YF® (resp. YER ) to be the disjoint union over ¢ of Y};}} =
Y[})) B (O;i x K) (resp. Y};IPV‘W = YI})II; o/ (Olfﬂjrr x K)) . The set of geometrically connected components
of YR may be identified with the strict ideal class group AX/F (O @z Z)*.

The formation of O} -invariants does not change p-adic and mod p geometry of Xf® and X{R, we
are interested.

4 Hecke operators, odds and ends

4.1 Classical p-adic Hilbert modular eigenforms

Let V denote the open compact subgroup K or KIw of (Resp /QGL2)(Z) as above. With that choice
made, let X‘li}} denote its toroidal compactification over O defined as above. While the smooth O-

scheme XIP;%} depend on a choice of an admissible polyhedral cone decomposition, we shall not refer
to the choice. Furthermore, we may and will choose an admissible polyhedral cone decomposition for
V = KIw compatible with the choice we make for X IP(}}.

Let (A/S,i, A, n, (Lie"(AY/S)-(1) C --- C Lie"(AY/S),)) be an S-point of YI}* for an O-scheme S.
Let Lg denote the direct sum of two copies of O, ‘base-changed’ over O to Og. The cotangent sheaf
Lie"(A/S) of A over S is a direct sum of locally free sheaves Lie” (A/S), of Og-modules of rank e, for

T in ip = Home(Fp,L) for every p in Sp. For every 7, the polarisation A equips Lie”(A4/S), with a
filtration

0 =Lie"(A4/9),(0) C Lie"(A/S).(1) C --- C Lie"(A/S)(ep) = Lie"(A/S), C Hir(A/S),

defined on LieY(AY/S),. The locally free sheaf ker(r @ 1 — 1 ® ~L| Higz(A/S)/Lie"(A/S)(t — 1)) of
Og-modules is of rank 2 for every 1 <t < ep, and

LieV(A/S),(t)/Lie¥ (A/S),(t —1) Cker(n @1 — 1 ®@~L | Hig(A/S)/Lie¥(A/S)(t — 1)).
The covering over S, defined as the Zariski sheaf over S of isomorphisms
ker(m @1 —1®~%L | Hig(A/S)/Lie” (A/S)(t — 1)) ~ Lg

for all 7in %, 1 <t < e,, and p in Sp, which sends Gr"(A/S),(t) = Lie"(A/S),(t)/Lie¥(A/S),(t — 1)
to a line in Lg which equals its orthogonal for the standard alternating form on Lg, is a torsor with
respect to the ¥-product of a Borel subgroup B of the base-change GLy,o (by the standard embedding
of Q into L), where ¥ = Homq(F, L). In the unramified case, this sort of construction is standard (using
the smooth model of Rapoport [45]); the Pappas-Rapoport filtration exactly makes it possible to see all
isotypic components, which does not seem possible with the integral models defined in [16].

For a pair A = (k,w) consisting of a [F : Q]-tuple of integers k = >_ k,. where ¢ ranges over ¥ and
an integer w such that k, = w mod 2, consider the following invertible sheaf of Og-modules:

Q) GrY(4/8)- (1) @ Qi @ St T2
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where all tensor products are defined for Og-modules, and the first tensor product ranges over 3 where,
for every ¢ in 3, there exists a unique prime p above p such that ¢ : F®q Q, — L factors through F}, and
its restriction to the unramified extension Fp over Q, is exactly 7 and ¢, as an element of ¥, . corresponds
to 1 <t < ep; and where QdR is the -isotypic component of the sheaf of relative differentials of S over
O, and where Std, is the invertible sheaf of Og-module corresponding to the standard representation of
the centre in B followed by the projection to S by .

Let 7\ denote the invertible sheaf on Y‘f R obtained when applying the construction to the universal
HBAV A over S = YF'®. The invertible sheaf extends to X1/®, which we shall again call . It should be
possible to use these sheaves to define an eigenvariety for Hilbert modular forms in the general ramified
case.

Definition. We define a section of the induced invertible sheaf &\ over XER (resp. X}R ) for
A = (k,w), to be a p-adic classical cusp Hilbert modular form (on Resp,qGL2) over O of level K (resp.
K N1Iw) and of weight A, or of weight k and central character of weight w.

Remark. We will only interested in the case of A = (k,w) where k, = 1 for every ¢ in X.

For every prime p of I above p, let w, denote the automorphism of XEPR defined on the non-cuspidal
points by the automorphism sending (A4, C') to (4/Cy, Alp]/Cy x C?) where by C?, we mean the finite
flat subgroup ‘C away from p’.

Let 71, or 7 when it is clear what it is meant (resp. m2,, or mp), denote the morphism XER — XER
defined on the non-cuspidal points by the correspondence sending (A, C) to A (resp. to A/Cy).

We define Hecke operators on XEX . For a prime Q of F not dividing p (With a uniformiser mq), let

X Ipﬁw Iwa denote the toroidal compactification of the fine moduli O-space YKIW Twa of A, parameterised
by YER | together with a finite flat subgroup scheme D = Dq of the finite étale group scheme A[mq),

étale locally isomorphic to (Op/mq)?, of order NFg/qQ which locally f.p.p.f. admits a O /Tq-generator.
It follows from the proof of Theorem 3.7.1 in [34] that the forgetful map m; q : Y}?&JWQ — YER is arel-
atively representable morphism which is finite étale. Let m5 g denote the extension to X%’{W’IWQ — XIP;E{W
of the morphism defined by sending a non-cuspidal point (A, D) to A/D.

For p above p, let XER Klw,Iw, [1/p] denote the toroidal compactification of the fine moduli L-space
YKIW,pr [1/p] which is the ﬁmte étale covering over YR [1/p] parameterising (A, C) together with a
finite flat subgroup scheme D of the étale group scheme A[p] of order Np/qp which has only trivial
intersection with C. It again follows from the proof of Theorem 3.7.1 in [34] that the forgetful map
mp o YER JTw, [1/D] = Y}?ﬁ;[l /p] is a relatively representable morphism which is finite étale. Let ma
denote the morphism XEX Iw, [1/P] = X PR [1/p] defined on the non-cuspidal points by the represent-
able morphism sending (A4, C, D) to (A/D,(C + D)/D).

Let 71, o denote either w1 g, m2 q : X[P;II)‘WJWQ — XEPR or myp,map X?;”WJWF [1/p] — XER [1/p].

Let X IP(II}‘WR * denote the Raynaud genemc fibre associated to the formal completion of XEXR along its
fibre. By slight abuse of notation, we let X P& KTw,Iw, [1/p]R® denote the Tate rigid analytic space associated
to the generic fibre X ;}?W,pr [1/p]. Let @) gr-a denote the Raynaud analytification of the invertible sheaf
oy over X and XER.

By definition, we have 752\ r-a — T} @\ R-a- If U and V are admissible open subsets of XIF;?‘;,R_a in
the case of Q and XL, [1/p]®® in the case of p satisfying 7, *(U) C 7, *(V), we have a homomorphism
of sections

A\ r-a(V) — (M2 R-a)(V) (mams D pr-a)U) — (M7 p-a)U) —> D pr-alU)

I I
WEVQ{)\’R_a(ﬂ'gl‘/) — W;JZ{)\,R_a(T(;lU)
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where the rightmost map is the map of U-sections of the trace morphism; and we shall call it HeckeCor(p)(U)
or HeckeCor(Q)(U) depending on the case with p or Q.
Let U, denote the morphism

(Ng/qp) 'HeckeCor(p)(U) : & p-a(V)— % r-a(U)

We define Ty (Uq if Q divides the level of U) exactly the same with Q in place of p.
Finally we define an operator w, of sections of the invertible rigid analytic sheaf <7\ r-. over an
admissible open subset U of XZ?V;R_a. For a section f of @)\ r-a over U, the pull-back wy f is a section

over wpU of wy @/ r-a; its pull-back 73 jwy f is a section over wyU of @) r-a, which we shall call wy(f).

4.2 Overconvergent p-adic Hilbert modular forms

We shall define an invariant ‘finer’ than the degree functions of Raynaud [47] and Fargues [21]. This is
specific to HBAVs of Pappas-Rapoport type parameterised by XIP(II?‘V’VR_a, and is a key technical input that
allows us to perform analogues of Kassaei’s calculations in the unramified case [31]. One significant ad-
vantage of our construction is that, as we shall see it in Lemma 49 for example, it reads p-adic geometry

of X -1 qualitatively more than the standard degree function on the Raynaud generic fibre of Y2F .

Let K be a finite extension of L; and let Ok denote its ring of integers and let v denote the valuation
on K normalised such that v (p) = 1. Let S = Spec 0.

Following Tate [57],

Definition. Let & be an associative ring with a unit. An &J-module scheme over a scheme S is a
commutative group scheme G over S together with a unitary ring homomorphism & — End(G/S); this
makes G(T') for every S-scheme T a free 0-module. If € is of characteristic p and the &-rank of G(T')
is independent of T" and indeed 1, we call G a Raynaud &-module scheme (or &-vector space scheme if
0 is a field).

Let f : A/S — B/S denote a (closed) non-cuspidal S-point of XE5  corresponding to a K-point of
XE?V’VR_"‘. For every p in Sp, 7 in 3, and 1 < t < e, define deg((A,C)/S).(t) in [0,1/e] to be the vk
of a generator in Ok of the annihilator of coker(Gr"(AY/S),(t) — Gr¥(BY/S).(1)).

The sum of all the deg((A,C)/S)-(t) equals the degree function of Raynaud [47] and Fargues [21].
While it is defined pointwise, this definition works ‘in families’, i.e., one may take S to be an admissible
covering of XP® (and glue).

Note that our degree functions are defined solely as a result of filtrations defined on both ends of the
isogeny f. Incorporating one’s ‘choices of uniformisers’ into the equation is what seems to be achieved
by this definition.

Suppose that a cusp corresponding to a (class of) ¢-cusp degeneration data C as above correspond
to a semi-abelian A = (G ®z D™'M~1)/¢" over S = 1, X¢ -, whose pull-back to []_ Y, is a HBAV
and which comes equipped with an isotropic Og-stable Raynaud submodule scheme C' = HP Cy C

[, (G® DM~ /¢gN)[p] as above, let deg(A),(t) be 0 (resp. 1) for every 7 in ¥, and 1 < t < e,

whenever p is in Sp x (resp. Sp.:). In fact, analytic functions on Y;;E;R_a defining degrees extend to
XIF;?‘;,R_&, allowing us to define admissible open subsets in terms of degrees.

Definition. For A = (k,w) as above, a p-adic overconvergent (cusp) Hilbert modular form over O of
level K N Iw of weight k& (and central character of weight w) is defined to be an element in the direct
limit, over the positive rationals €, of the sections of 27\ r-, over the admissible open subset of points £

in XIP(II)”V’VR_a satisying deg(€) < e.

5 Mod p geometry of modulil spaces of p-divisible groups

In this section, we study mod p geometry of XL and XER | by phrasing the essential part of arguments
in terms of stacks, or morally ‘local Shimura varieties’, of p-divisible groups. We define two new invariants
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for p-divisible groups of Pappas-Rapoport type, namely

e Ypr where ‘BT’ stands for Bruhat-Tits as we consider ‘combinatorial choices of lines in vectors
spaces of a fixed dimension’ at Pappas-Rapoport filtrations; this invariant generalises the ‘Deligne-
Pappas invariant’ in [16],

e and Yo, which is based on the observation of Reduzzi-Xiao [48].

Y ko will be used as an essential geometric input in proving an analytic continuation theorem (Propos-
ition 59), which allows us to pass from one ‘canonical end’ of the valuation hypercube to near the far
(opposite) end of the hypercube. In Section 5.4, the ‘Rapoport-Zink’ [46] stratification is introduced.
Proposition 35 and Proposition 36 are the key observations in characteristic p that are to be used in
studying the dynamics of U,-operator in characteristic zero generic fibre. In fact they play the same role
as Lemma 2.1 in [31].

Let p be a rational prime. Fix once for all an algebraic closure Qp of Qp. In this section, let 7 a
uniformiser in the ring & of integers of F},, e the ramification index, and f the residue degree.

Let L C Qp be an extension of Q, containing the image of every conjugate of F' in Qp, and let O
denote its ring of integers; and let k denote its residue field, and 3= f]p denote the set of all Q,-linear
embeddings of the residue field F = I, of F}, into . Let f denote the element of 3> which is (the unique
lifting of) the standard Frobenius automorphism.

The map sending ™ ® 1 to a variable u defines an isomorphism

OQFK~ @Fe[u}/ue

where @ ranges over .

Let X be a Barsotti-Tate (Définition 1.5 in [29]) p-divisible group over a x-scheme S of dimension
ef ([29] Remarques 2.2.2, (b)) and of height 2ef, equipped with endomorphism i : & — End(X/S).
Suppose that it is principally polarisable, i.e., there exists an &-linear isomorphism A : X/S — XV/S. It
then follows that Lie(X/S); is a locally free sheaf of Og-modules of rank ef, while the S-dual (5.3 in [4])
DY (X/S) of the Dieudonné crystal sheaf D(X/S)s on the (small) site S is a locally free sheaf of 0®z, Og-
modules of rank 2. The dual DV(X/S) comes equipped with Frobenius-semi-linear endomorphisms F
and V defined by duality in terms of V and F on the Dieudonné crystal D(X/S) respectively; hence
DV (X/8) is isomorphic to D(XV/S) as Dieudonné modules, and Lie" (X" /S) ~ VDV (X/S) for example.

Definition. For a closed immersion of S into the first-order thickening S[e]/€2, let DV (X/Sle]/e?)
denote the S-dual of the Dieudonné crystal D(X/S) on the site Se]/€2. For a homomorphism ¢ : L — M
of Og-modules, we shall let L[] denote the kernel ¢ in L.

5.1 Filtered Deligne-Pappas/Kottwitz-Rapoport

Definition. A principally polarisable Barsotti-Tate p-divisible group X/S as above is said to be filtered
if, for every 7 in ¥, the 7-component Lie" (X" /S), of the dual of the Lie algebra sheaf Lie(X " /S) of the
dual p-divisible group XV over S, comes equipped with a filtration

0 =Lie"(X"/S),(0) C Lie"(X"/S),(1) C--- C Lie"(X"/9),(e) = Lie"(X"/S), C DY(X/S),

such that Lie¥(XV/S),(t) is, Zariski locally on S, a direct summand of Lie" (X" /S), of rank ¢ and is a
sheaf of & ®, Og-submodule of Lie" (X" /S),, satisfying, if we let u denote 7 ® 1,

u(LieY (XY /S),(t)) C Lie" (XY /S),(t —1).
For brevity, we often write Gr” (X" /.9), (t) to mean the quotient Lie" (X" /S),(t)/Lie¥ (X" /S),(t—1).
Lemma 27 For every 7 in fl,

u(Lie¥(XV/S),(1)) = 0,u*(Lie¥ (X" /S)+(2)) = 0,...,u(Lie” (X" /S),(e)) = 0

28



Proof. Since u(Lie¥(XV/S),(t +1)) C Lie"(XV/S),(t), it follows that u**!(Lie"(XV/S),(t + 1)) C
ut(Lie¥ (XY /S),(t)); hence it suffices to show that u(Lie" (X" /S),(1)) = 0 but this holds by definition.
U

Lemma 28 u*~‘Lie”(XV/S), C Lie"(X"V/S),(t) for every 1 <t <e.

Proof. This can be proved by induction. When ¢t = e, the equality evidently holds. Suppose
ue~ D Lie¥(XV/S), C LieY(XVY/S),(t + 1) holds for t < e — 1. Then

u¢~LieY (XV/9), = uwut~ D LieV(XV/S), C uLie”(X"/S) (t+1) C LieV(XV/S),(t).

Definition. Since X/S is principally polarisable, Lie(X/S) is also filtered if it is filtered. Indeed, by
duality, Lie(X/S) comes equipped with surjections:

Lie(X/S), ~ Lie¥ (X" /S)" = Lie" (X" /9),(e)V — Lie"(XV/S),(e—1)¥ — -+ — Lie" (X" /9),(1)¥ = 0

such that every kernel is a locally free sheaf of Og-modules of rank 1 and is annihilated by w; in-
deed, LieY(XV/S),(t + 1)/Lie”(X"V/S),(t) is isomorphic to the dual of ker(Lie”(X"/S),(t + 1)V —
Lie¥(XV/9),(t)V).

Define Lie(X/S)-(t) to be the kernel of the composite of surjections:

Lie”(XY/8),(e)Y — Lie"(XV/S),(e —1)¥ — Lie" (X" /S) (e — t)".
Then Lie(X/S), comes equipped with a filtration

0 = Lie(X/S)-(0) C Lie(X/S),(1) C --- C Lie(X/S),(e) = Lie(X/S)-
which is analogous to the filtration on Lie” (XY /S); in particular, the assertions in the preceding lemmas
hold for Lie(X/S) in place of LieY(X"V/S). Note that, by definition, Lie(X/S), (¢t + 1)/Lie(X/S),(t)
is dual to ker(Lie"(XV/S),(e)/Lie¥(XV/S),(e —t — 1) — Lie"(XV/S),(e)/Lie" (XV/S).(e — 1)) =
Lie”(XV/8),(e —t)/Lie¥ (XV/S), (e —t — 1).

Definition. Let SBT denote the stack of principally polarisable filtered Barsotti-Tate p-divisible
groups over Spec k. The stack SBT parametrises that p-divisible groups arising from points of YE® as
defined in Section 3.

Definition. For a principally polarisable filtered p-divisible group X over a k-scheme S, let
D(X/S),(t) = ker(u| DY(X/S),/Lie” (X" /S),(t — 1))

for every 7 in X and 1 < ¢ < e. It is a locally free sheaf of Og-modules of rank 2 (see Proposition 5.2 (b)
of [42] with d = 2).

5.2 Bruhat-Tits
For every 7 in 3, define a set Ypr,r of e integers Xprr = {vpr,+(1),..., VBT +(€)} satisfying:
° VBT,T(l) = Oa

e for every 2 < t < e, exactly one of the conditions, (BT-1): vgr.(t —1) = vgr,(t), or (BT-2):
veTr(t —1) + 1 =wvgr (t) is satisfied;

e for every t,
t —vBT,r(t) > v A (1).
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When convenient, we let vt ,(0) = 0, and let vgr , denote vpr - (e).
Remark. The number of ¢’s satisfying (BT-2) equals vgr,;.

Definition. Let Y1 .1 (resp. Xpr.r2) denote the subset of {1,...,e} consisting of 1 and the set
of 2 <t < e satisfying (BT-1) (resp. consisting of 1 < ¢ < e satisfying (BT-2)). Evidently ¥pr -1 and
YBr,r,2 defines a partition of {1,...,e}.

Definition. Given Xt ;, define a subset v, of {1,...,e} the following way. Firstly, for every T,
we define a map (; (dependent of ¥pr ) from {1,...,e} to the set of length e (labeled) sequences of
two elements {er, ea}, by defining (, () = ey if ¢ lies in Xpr 1 and (- (t) = e if ¢ lies in Xpr ;2. We
then turn the resulting sequence (-(1),...,¢-(e) of ‘words’ into its reduced expression by sequentially
(as t increases) eliminating the adjacent pair ejes; the corresponding pairs of indices in {1,...,e}, or an
index that is in pair, so eliminated will be referred to as Xt -redundant. Finally define v - to be the
set of all 1 < ¢ < e that is not Xgr ,-redundant. By definition, |ygr | = e — 2vgr, -, which is defined to
be non-negative.

Definition. For every integer 1 < N < e, let DV(X"Y/S)-(N) denote the image of DY (XV/S), by
N
u'Y.
Definition. Given data ¥ consisting of Y1 = (Xpr,7)-, define SET to be the closed x-substack of
SBT of principally polarisable filtered p-divisible groups X over s-schemes S satisfying

DY(X/S).{e —vpr (1)) C LieV(XY/S).(t) C DV(XY/S) (e — (t — vpr.+(1))).

Observe that when Xt is defined by demanding that vgr -(t) = 0 for every 7 in 3 and t, the stack
SET is nothing other than SBT.

For two sets of data ¥ = {vpr(t)} and ¥+ = {lgT(t)} as above, we may define a partial or-

der ¥t < ¥ if Igr.(t) < vpr.(t) holds for every 7 in ¥ and 1 < ¢ < e. If this is the case,

DY(X/S).{e—Ipr, ) is contained in DV (X/S),(e—vpr ), while DV(X/S),(e— (t—vpT,)) is contained
in DY(X/S),(e — (t —lgr,r)), hence SET defines a closed k-substack of SET.

Definition. If a principally polarisable filtered p-divisible group X over a k-scheme X lies in the
S-fibre of ST — Us+ 5, S5t , we say that X is of type ¥ = Sgr and let vpr(X/S),(t) and ygr,-(X/S5)
respectively denote vpr -(t) and ypr » corresponding to X.

Proposition 29 For ¥ = Xgr as above, the closed immersion from SEBT to SBT is representable and
formally smooth of relative dimension ) _e— (e —2vpr,) =Y 2UBT 7.

In earlier versions of the paper, we gave a ‘linear algebra’ proof of this proposition by carefully in-
specting the moduli problem. In the following, we opt for a proof that is admittedly rather highbrow,
yet sheds more light on Pappas-Rapoport constructions ([41] and [42]), in particular, on their relevance
to Deligne-Pappas constructions.

For simplicity and for ease of reference to [41] and [42], we assume || = 1. The transfer of a
proof to the general case is straightforward, as the case |ﬁ)| = 1 typifies what happens at every 7 in N
independently.

Let k be a field of characteristic p and let k[[u]] (resp. k((w))) be the power series (resp. Laurent
series) ring k[[u]] with coefficients in k and a variable w.

Let Fg denote a free k((u))-module of rank 2 and fix a k((u))-basis. Let &/ C Fy denote the free
Ek[[u]]-module generated by the basis over k[[u]].

For a k-algebra R, by a k[[u]] @) R-lattice in & @) R ~ R((u))?, we mean a submodule over R[[u]]
of Foy ®; R which is, locally on Spec R, a free R module of rank 2 and, when u is inverted, it gives rise
to Foy ®k R. We often say ‘... parameterises k[[u]]-lattices of F,’ to abbrivaite this functorial view.
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Let G denote GLo(k((u))) and K denote the subgroup scheme of GLa(k((u))) whose k-valued points
stabilise the lattice /. We see G (resp. K) as the (resp. positive) loop group of GLy and let G/K be
the fpqc sheaf quotient, i.e., the affine Grassmannian of GLsy. For brevity, let X denote the e copies of
G/K, which is also an ind k-scheme.

For an element 7 of dominant coweight GLg, let G(7) denote the closure of K7K in G.

Fix a positive integer ¢. Let

¢:(¢17"'7¢f)

be an ¢-tuple of coweights of GLs which are either trivial or (dominant) minuscule, in other words, by
the standard identification of the coweights with Z?2, ¢ is an ¢ tuple of vectors (0,0) or (1,0).

Let G(¢) denote the closed subscheme of the ¢ copies of G which parameterises (71,...,7) € GX---X
G such that v;_17; " lies in G(¢;) (where we set v, = 1 when t = 0); it is evidently a closed subscheme
of the ¢ copies of G. We define right action of K¢ by right translations component-by-component.

On the other hand, define an isomorphism

G(¢1) x -+ x G(de) = G(9)

by
(Y15 ve) = (Vs 1y2, YL Ye)-

By this isomorphism, the aforementioned right action of K* on G(¢) induces right action of K¢ on

G(¢1) x -+ x G(¢e):
(Vi s70) (Bry -5 Be) = (1181, By 1282, - -+, By 1 veBe).-

The isomorphism G(¢1) x -+ X G(¢¢) — G(¢) induces an isomorphism D(¢p) := (G(¢1) x -+ X
G(¢e)) /K" — G(¢)/K" of the right K*-quotients (in the fpqc topology) and it is possible to interpret
them slightly differently.

The quotient G(¢)/K* C X parameterises, for a k-algebra R, the set of k[[u]] ® R-lattices
o =40)DA(1) D DI)

in Fyy such that, for every 1 < t < /, the relative position p(«/(t — 1), o/ (t)) satisfies the inequality
p((t—1),4(t)) < ¢ in terms of the standard partial order on the dominant coweights of GLa. The
condition about the relative positions indeed implies that ue/(t — 1) C «/(t) C /(t — 1) for all ¢.
Furthermore, if ¢ is an index such that ¢ is trivial, &/ (t — 1) = &/(¢); hence there are only maximum
¢ — {1 <t < {|¢; is miniscule}| distinct lattices in each chain &7 (1) D --- D &/ (¢) contained in <.

With this ‘moduli viewpoint’, the isomorphism from G(¢)/K* to D(¢) is given by sending a chain of
lattices (&7 (1) D -+ D /({)) in Fg as above to (&7 /7 (1), 2/ (1)/ < (2),...,9 (e — 1)/ ({)).

On the other hand, D(¢) = (G(¢1) x --- x G(¢¢))/K* is thought of as a left G-homogenous bundle
that is given by iterated P!-fibrations in the following sense:

e Let K act on G, and hence on G(¢y), from right by right translations and let L(¢,) denote the
quotient G(¢y)/K C G/K, which come equipped with natural left G action by left translations.

e Fixing ¢t > 0, suppose D(¢¢—¢,...,d¢) is a left G-equivariant bundle over G(¢s—;)/K. We then
define

D(¢o—(t41)s Pe—ts- - b0) = (G(Po—(t41)) X D(Pe—t,---,00))/ K
where we see D(¢p—¢,...,¢¢) as a right K-module by left-inverse translations and K acts on
G(¢r—(t41)) by right translations. We let G acts on D(¢g—(¢41), - - -, ¢¢) from left by letting it act on

the G(¢c—(141))-factor only by left translations; as a result, D(¢¢—(¢11),- .., ®¢) is a G-equivariant
bundle over over G(¢¢—(1+1))/K.

31



If ¢; is minuscle, G(¢;)/K is P! over k which is smooth and consequently, D(¢) is smooth of dimension
{1 <t </{|¢; is miniscule}| = (1 + - - - ¢g, (1, —1))

where (, ) is the standard scaler product on R? and where we see the dominant weight ¢ + - - + ¢
as a pair of integers. One normally thinks of D(¢) as a resolution? of G(¢1 + -+ + ¢¢)/K by iterated
P!-fibrations. As [42] Section 6 establishes, G(¢1) x - - - x G(¢y) is naturally thought of as a K¢~ '-torsor
over D(¢).

Definition. Let XP® be the closed ind-subscheme of X parametrising k[[u]]-lattice chains < >
(1) D+ D () in Fg such that
A DA1)D--DFU)=EU)DEU—-1)D---E(1) Duled

where, for every 1 <t </, we denote
E(t) = ut "t (t).

Definition. Let XPR(¢) denote G(¢)/K*.

By definition, XT®(¢) is a closed ind-subscheme of XFR. Also, since D(¢) is smooth over k, so is
XPR(¢). Evidently, if ¢ is such that ¢; is miniscule for every 1 <t < ¢, then XFR(¢) = XFPR,

We now recall Pappas-Rapoport local models. Unless otherwise specified, £ is chosen to be e in the
following.

Fix an isomorphism ¢ ®z, k ~ k[u]/u® sending 7 ® 1 to v and A denote a free R-module &7 ®jjy)]

R{[u]] /uc.

The Pappas-Rapoport local model NP® parameterises, for a k-algbera R, the iset of of locally free

R-modules

0=A0)c AQ)C---A(e) CA®R
such that A(t) is, locally on Spec R, a free R-module of rank ¢ and such that T® 1 € (0 ® k) @, R
annihilates A(t)/A(t — 1) for every 1 <t <e.

For a such chain of locally free R-modules A(1) C --- C A(e), if £(1) C --- C &(e) C & @ R denote
a chain of k[[u]]-lattices in &7 lifting A(1) C --- C A(e) by &/ ®; R — A ®; R then the map

frA)C - CAle) = (E(1)C--CEe)CutE(e—1)C--- Cul™?&(1))

gives a bijection between NTR and XPR where the ‘converse’ f~! is given by sending (27(1) D --- D
4 (e€)) to the image of (u¢ 1/ (1) Cu 2 (e—2)C - CutF(t)C - CH(1) C AR R)in AQx R
by reduction &/ ®; R — A ®; R mod u®.

For ¢ = (¢1,...,¢.), we define a closed stratum NFR(¢) of NPR parameterising locally free modules
A(l) C --- C A(e) C A such that the relative position p(A(t — 1), A(t)), naturally thought of as an
element of GLg(k[u]/u®)\GL2(k((w)))/GL2(k[u]/u®) lies in the closure of GLa(k[u]/u®)p:GLa(k[u]/u®)
in G for every 1 <t <e.

The map f: NP® — XPR gives rise to an isomorphism
NPR(g) = XPR(g).

We finally prove the proposition. We define a closed subscheme NER of NPR with ¥ = Spp =
{ver(1),...,vpr(e)}: it parametrises the set of locally free modules A(1) C --- A(e) C A such that A(t)
is, locally on Spec R, a free R-module of rank ¢ and satisfies

A<€ — VBT(t)> - A(t) C A<6 — (t — I/BT(t))>

2The construction is often attributed to Demazure, Lusztig, Bott, Samelson and Hansen.

32



for every 1 < t < e. Note that the condition, evidently closed, is placed to specify the elementary
divisors, i.e., a pair of integers defined as the u-valuations of a two generators of A(t) when written in
terms of k[u]/u®-basis of A. More precisely, the elementary divisors of A(t) is a pair e — vgr(t) and
e — (t — vgr(t)), which satisfy the inequality e — v (t) > e — (t — vgr(t)) by definition and which we
might see as a dominant weight of GLy. If we let &(1) C --- C &(e) C &7 denote a chain of liftings in
o/ of A(1) C --- A(e), the elementary divisors of &(t) remain the pair (e — vpr(f),e — (t — vpr())) but
&(t)(—(e —t)) has elementary divisors (t — vpr(t), vgr(t)) for every 1 <t <e.

The scheme NER is a local model for SBT and the proposition follows from the smoothness of NE&®
which we prove in the following Lemma.

Lemma 30 Let ¥ = Xt = {vpr(l),...,vpr(e)}. Define ¢ by ¢i is minuscle if t lies in ypr; and ¢; is
trivial if t is redundant, for every 1 <t <e. Then

NiR ~ NPR(g).
In particular, NgR is smooth of dimension |ygr| = e — 2vpT over k.

Proof. Since XPR(¢) is isomorphic to NFR(¢), we prove the assertion as an isomorphism of closed
subschemes in XPR. For a k -algebra R, let £(1) C --- C &(e) C o/ denote a chain of lattices in Foy @5 R
that reduced to an R-point of NER. For every 1 < t < e, let &/(t) denote &(t)(—(e —t)). Then one
observes that the 7 (t)(—vpr(t)) as t ranges over qpr define an R-valued point of XTR(p) where ¢ is
the |ygr| = (e — 2vpT)-tuple of minuscule dominant coweight (1,0). It is easy to check that this defines
an isomorphism NER ~ XPR(p). By the definition of ¢, XTR(¢) is evidently isomorphic to XFR(¢p). O

Remark. We have NE® ~ NPR(¢) ~ XPR(¢) ~ D(¢). In particular, D(¢) can be seen as a
resolution of G(¢1 + -+ + ¢.)/K. The local model corresponding to G(¢1 + -+ + ¢.)/K therefore
parameterises, for a k-algebra R, the set of locally free R-module A(e) C A®y, R of rank e satisfying the
condition

A<€ — VBT> C A(e) - A<I/BT>.

This is precisely the closed k-singular stratum of the Deligne-Pappas local model, 4.2 in [16]; and N&®
is thought of as a resolution of the stratum at the singularities.

Proof of Proposition 29. Since NE® is a local model for SER when || = 1, the proposition follows
from the lemma above, combined with the observation that NY*®(¢) ~ D(¢) is smooth over k = r of
dimension e — 2vgT and NPR ~ XPR s smooth of dimension e. O

5.3 Ekedhal-Oort

In this section, we shall consider an ‘Ekedahl-Oort stratification” on SBT. To this end, we use a slight
variant of the construction of ‘partial Hasse invariants’ by Reduzzi and Xiao in [48]; the ‘source’ of
our maps are on D(X/S),(t) in comparison to [46] on Gr” (X" /S),(t). We emphasise that the idea is
essentially Reduzzi-Xiao’s.

Let S be a k-scheme S and X be a filtered principally polarisable Barsotti-Tate p-divisible group over
S. The Verschiebung Vv : XV — XV(1/P) defines, for every 7 in %, a ¢~ '-semi-linear homomorphism

LieV (XV/S)jor — (Lie¥(X"Y/S) x,-1 S), ~ Lie¥(XV1/?) /5), Y LieY(XV/S),

of Og-modules that we shall denote simply by V', where ¢ denote the (absolute) Frobenius morphism on
S.

Lemma 31 V above sends Lie" (X" /S)(t) C Lie"(X"/S)- to Lie" (X" /S)j-10r(t).

Proof. Since u'Lie” (X"V/S),(t) = 0, one sees that Lie¥ (X" /S),(t) C u¢"*DY(X/S),. As V is u-
linear, V(Lie" (XV/S),(t)) C u*"'VDY(X/S), = u®~'Lie" (X" /S)j-10,. It follows from Lemma 28 that
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u'Lie¥(XV/S);-10, C Lie¥(XV/S)-10,(t). Combining these two, the assertion follows. [J

For 2 <t <e, we let
Al :D(X/S),(t) — D(X/S).(t —1)

denote the multiplication-by-u-map, and, when ¢t = 1, we let
ALl :D(X/S),(1) — GrY(XY/S)j-10,(e) C D(X/S)-(e)

be the map ‘V o u=¢T! that sends an element u®~1¢ in D(X/S),(1) = ker(u|DY(X/S),) with £ in
DY(X/S); to the class V(§) + Lie" (X" /S)i-10,(e — 1) in Gr¥ (XY /S);-15.(e).

For 2 < t < e, D(X/S),(t) is nothing other than u~!'Lie"(X/S),(t — 1)/Lie”(XV/S),(t — 1), and
therefore the image of A is GrY(XV/S),(t—1). The rank of the kernel D(X/S),(¢)[AL] is 1 as a result.
Similarly, the image of Al is Gr¥ (X" /S)j-15,(e). As pointed out in Lemma 3.8 in [48], the restriction
to Gr¥(XV/S),(t) of the composite ATl o---0AS, oAlo...0AL:

f_loT f_lo‘r

A€ t+1

D(X/8),(t) 25 - 25 D(X/8),(1) 25 D(X/S)y10r(e) 57 - D(X/S)s 100 (1)

defines the Verschiebung map
V:GrY(XV/9), (t) — GrV(XV/S)f—IOT(t)

induced by Lemma 31. When f = 1, we recover the standard Verschiebung.

For every 7 in 3, let ~vEo,r denote a subset of {1,...,e}, and Xgo denote the S-tuple (vEO,7)r &S T
ranges over 3.

For ¥ = g0, we define SET to be the r-substack of SBT parameterising filtered principally polaris-
able p-divisible groups X over k-schemes S such that, for every 7 in f], Al is zero if ¢ lies in ygo, -

Remark. In the light of the proof of Proposition 29, it is possible to relate ¥p1 and Ygo.

For two sets of data ¥ = Xgo = (yr0,7)r and T = EEO = (7%077)7, we may define a partial order
Yt <Yifygo,r < ’y;{OJ holds for every 7 in 3. If X+ < ¥ but I is distinet from X, we write 2+ < .
If this is the case, SEB;F defines a closed k-substack of SET.

Definition. If a principally polarisable filtered p-divisible group X over a x-scheme S lies in the S-
fibre of ST —Us+cx SEBI, we say that X of of type Xgo, and let ygo,-(X/S) denote vgo, - corresponding
to YXgo.

Proposition 32 Let ¥ denote Yrpo. The closed immersion from SST to SBT is representable and
formally smooth of relative dimension ) _|Ygo,r|.

Proof. Let U be a k-scheme. Let S be a U-scheme, and S[e]/e? its first-order thickening. Let X be
a principally polarisable filtered Barsotti-Tate p-divisible group over S defining an S-point of the fibre
Sg}} over U. As Sg}} is given by the vanishing sections over S of line bundles AL for ¢ in ygo , for
every 7, the relative dimension of Sg:fj — SBT is at most Y |Sgo,r|. It therefore suffices to establish
that the tangent space of SR, at X/S has codimension Y _[Ypo | in the tangent space of Sfj*. Fix
7 and 1 <t < e, and suppose that Lie" (X" /S),(t — 1) lifts to S[e]/e. If t lies in o -, it follows, by
definition, that Gr" (X" /S), is contained in the rank 1 module D(X/S),(¢)[AL], and therefore they are
equal. As D(X/S).(t)[AL] lifts uniquely to S[e]/€2, so does GrY(XV/S).(¢). O

5.4 Rapoport-Zink

Let SIBT denote the k-stack of principally polarisable filtered Barsotti-Tate p-divisible groups equipped
with @-linear isogenies to principally polarisable filtered Barsotti-Tate p-divisible groups. More precisely,
the fibre of SET over a k-scheme of S parameterises (the set of isomorphism classes of) of -linear
isogenies f : X/S — Y/S of principally polarisable Barsotti-Tate p-divisible groups X and Y over S such
that
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e C = ker f is afinite flat &-subgroup of X |[r] of order |&' /7| = |F| such that any principal polarisation
on X induces an isomorphism X [r] ~ X [r]V which sends C to (X[r]/C)V isomorphically,

e for every 7 in 3, both
Lie¥(fY) : Lie"(X"/S), — LieV(Y'V/9),

and
Lie¥(f")" : LieV(YV/S), — Lie¥(X"V/S),

given by f: X — Y and the ‘dual’ isogeny Y/S — X/S such that f*of=mon X and fo f =
on Y, will be denoted again by f¥ and (f")Y respectively by slight abuse of notation, commute
with their respective filtrations, and let

£ GV (XY /8) (1) — GV (YV/S). (%)

and

(FMY :GrY(YV)9),(t) — Gr¥ (XY /S).(t)
also denote the corresponding morphisms.

For pairs of 0-isogenies f and f” as above, we define analogues of the invariants defined in [46] and
[24].

Definition. For every 7 in 3, define yrz. - (f) (resp. vrz.-(f)) to be the set of 1 <t < e such that
fY (vesp. (f")V) is zero on Gr¥ (XY /S),(t) (resp. Gr¥(YV/S).(t)).

Note that, as m = 0, for every 1 <t < e, either ¢ lies in yrz - or in vrz -, or indeed in both.

Definition. Let ¥ denote a tuple (vrz -, YRz, )+, Where T ranges over 3, of subsets Yz €{1,...,¢e}
and vz r C {1,...,e}, satisfying the following condition that every 1 <t < e lies in at least one of Yrz -

or vrz,r for every 7 in X.

For a such X, define S’f’g to be the closed k-substack of O-isogenies f : X/S — Y/S of filtered
principally polarisable Barsotti-Tate p-divisible groups over S such that

o fV:GrY(XV/S) (t) = GrY(YV/S),(t) is zero for every t that lies in Yrz. -, i.e., YRz.» C YRz~ (f),

o (fM)Y 1 GrV(YV/9),(t) — GrY(XVY/S),(t) is zero for every t that lies in vrz.,, i.e., vrz, C
vrz,-(f")

Proposition 33 For X as above, the closed immersion of ng into SET is representable of relative
dimension 3¢ (f — (f — ezl + f — [vrzel)) = 202 (Ivrzel + [vRze| — f)-

Proof. This can be proved as Theorem 2.5.2 in [24]. O

If YRz Nvrzt = D, [Yrzt|l + |vrze| = f, and if this is the case for every 1 < ¢ < e, the relative

dimension of the closed immersion is 0.

Lemma 34 Let f: X/S — Y/S and its dual isogeny f* : Y/S — X/S be as above. Then the equalities
D(X/9)-)[f¥] = (f")"(D(Y/S):(t)) and D(X/S)-@)[(f*)'] = fY(D(Y/S)-(t)) hold, and they are
all of rank 1.

Proof. One observes firstly that, as (f*)V(D(Y/S),(t)) is contained in D(X/S),(¢)[fV], it suffices to
check that they are both of rank 1 over S. However, it follows immediately from Proposition 5.2 in [42]
that D(X/S),(t)[fV] is locally free of rank 1 over S. A similar argument shows that D(Y/S),(¢)[(f")Y]
is rank 1 over S and, as D(Y/S), () is rank 2 over S, (f)¥V(D(Y/S)-(t)) is rank 1 over S. An analogous
argument proves the other equality. [J
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Proposition 35 Let f : X/S = Y/S and " :Y/S — X/S be as above. Ift > 2 and t — 1 lies in vryz ,
while t lies in Yrz,7, then t lies in ygo,-(X/S). Ift =1 and e lies in vgy -1, while t =1 lies in Yrz, 7,
then t =1 lies in yro,-(X/S).

Proof. Firstly suppose ¢ > 2. The assumption that ¢ — 1 lies in vrgz , implies that ()Y vanishes
on the image by A = AL of D(Y/S).(t). As AD(Y/S).(t) ~ D(Y/S)-(t)/D(Y/S).(t)[A] and similarly
for X, it then follows that (f")V(D(Y/S)-(t)) C D(X/S),(t)[A]. On the other hand, ¢ is in yrz - (f)
and therefore Gr¥(XV/S),(t) is contained in D(X/S),(t)[fV] = (f*)V(D(Y/S),(t)). Combining, one
deduces that Gr¥ (X" /S),(t) is contained in D(X/S),(t)[A]. As AGrY (XY /S),(t) is zero, t lies in Yo -

The case t = 1 is similar, except that one has to be careful that the image by Al of D(Y/S),(1) is
GrY(X/8)-10,(e). O

Proposition 36 Let f: X/S —Y/S and f*:Y/S — X/S be as above. If t > 2 and if either
o t —1 lies in vry, » while t does not lie in Yrz, -+,
e ort—1 does not lie in vz, r while t lies in YRz, -,
holds, then t does not lie in ypo,-(X/S). If t =1, if either
e c lies in VRg j-1o, while t =1 does not lie in yrz -,
e or e does not lie in vry -1, while t =1 lies in YRz,

holds, then t =1 does not lie in vro - (X/S).

Proof. Suppose that t > 2. The case t = 1 is similar as in Proposition 35. Firstly, suppose that ¢t — 1
lies in vrz , but ¢t does not in yrz . It then follows exactly as in the proof of Proposition 35, using
the assumption that ¢t — 1 lies in vrz -, that D(X/S).(6)[fV] = (f/*)VD(Y/S)-(t) € D(X/S).(t)[A].
Observing that they all are of rank 1, one sees that they are equal. Therefore, if Gr¥ (X" /9),(t) lay
in D(X/9),(t)[A], it would contradict the assumption that ¢ does not lie in Yrz .. As Gr¥(XV/S),(t)
does not lie in D(X/S),(¢)[A], t does not lie in ygo, ;-

Secondly, suppose that ¢ lies in gz » but it does not in vrz . One observes that Gr¥ (X" /S),(t) C
D(X/S):(t)[fV] = (f")VD(Y/S).(t) are equal (of rank 1). One also observes that A(D(Y/S).(t)) is
Gr¥(YV/S),(t) and in particular it is of rank 1. It then follows that

AGrY(XY/8)-(t) = A(f)'D(Y/S):(t) = (f)"AD(Y/S)-(t) = (f*)'Gr¥ (Y /89)-(t - 1)

but the assumption that ¢ does not lie in vry j-10,(f) implies that AGr” (X" /S).(t) is non-zero. Con-
sequently ¢ does not lie in ygo,-. U

Swapping f for f” and f” for f, it is possible to prove:

Proposition 37 Ift > 2 and t — 1 lies in yrz,, while t lies in vrz, -, then t lies in ypo - (Y/S). Ift =1
and e lies in Yry j-10r while t =1 lies in vrz,,, then t =1 lies in ygo, - (Y/S).

On the other hand, if t > 2 and if either

o t —1 lies in yrz,» while t does not lie in vrz +,

e ort—1 does not lie in yrz » while t lies in vrz -,
holds, then t does not lie in yro,-(Y/S). If t =1, if either

e c lies in YRy j-10r While t =1 does not lie in vry, r,

e or e does not lie in Yz j-10r while t =1 lies in vrz ,

holds, then t =1 does not lie in ygo ~(Y/S).

Proof. See the proofs of Proposition 35 and Proposition 36. [
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5.5 Calculations with de Rham-Breuil modules

As in the previous sections, let 7 be a uniformiser in the valuation ring & of F},, e the ramification index,
and f the residue degree. Let F = &/m denote the residue field. Let & denote the valuation ring of
a finite extension L of F, which contains the image of every embedding of F}, into Q,. Write the set

32 =3, and the Frobenius automorphism f in 3 as in the previous section.

Let K denote a finite extension of L with ring Ok of integers, a uniformiser &, the ramification index
ex and k = Ok /(0K the residue field. We normalise the valuation on K so that p has valuation 1.
Unless otherwise specified, S = Spec Ok and S = Spec O where O = Ok /T in this section.

By a Barsotti-Tate p-divisible group (which comes equipped with an endomorphism ¢ — End(X/5S)),
we shall mean it in the sense of Définition 1.5 in [29] over S, and is of dimension fe and of height 2 fe.

Definition. A principally polarisable Barsotti-Tate p-divisible group X over S is said to be filtered
if, for every 7 in ¥, Lie¥ (X" /S), comes equipped with a filtration

0 = Lie"(X"Y/S),(0) C LieV(X"/S),(1) C--- C Lie"(X"/9),(e) = Lie"(X"/S), C DY(X/S),

such that LieY (XY /S),(t) is, locally on S, a direct summand of Lie” (X" /S), of rank ¢ and is a sheaf of
0 ®, Ok-submodule satisfying the condition

(T®1—-1®~5)Lie” (XVY/S),(t) C LieV (XY /9),(t — 1)

where v1,...,7¢ are the fixed roots of the Eisenstein polynomial E, over & ®, € which may also be
thought of as over 0 ®, Ok as defined in Section 3.

Definition. If X is a principally polarisable Barsotti-Tate p-divisible group over S, and C' is an F-
subgroup of X [r] of order |F| such that any principal polarisation X — XV on X induces an isomorphism
X|[r] ~ X[r]Y which sends C to (X[x]/C)Y, we say that C is a Raynaud F-vector subspace scheme of X
for brevity.

Furthermore, we say that C is filtered if it is the kernel of an &-linear isogeny f : X/S — Y/S of filtered
principally polarisable Barsotti-Tate p-divisible groups over S such that both Lie" fV : Lie¥ (X" /S), —
Lie¥(YV/S), and Lie" (f")Y : Lie¥(YV/S), — LieY(X"V/S), commute with filtrations on Lie" (X" /S),
and Lie(Y"V/S),.

Lemma 38 A principal polarisation ) : X — XV defines an isomorphism from C onto the Cartier dual
(X[n]/C)Y of Raynaud submodule scheme.

Proof. By definition, the image by X of C is contained in (X[r]/C)V. Since both are Raynaud sub-
module scheme, A defines an isomorphism. [J

Fix a filtered principally polarisable Barsotti-Tate p-divisible group X over S equipped with a filtered
Raynaud submodule scheme C' which is the kernel of an &-linear isogeny f : X — Y = X/C; [ gives
rises to a map of Ox-modules

Lie¥ f¥ : Gr¥(XY/8),(t) — GtV (Y /8). (1)

for every 7 in 3 and 1 < t < e, and define deg((X,C)/S),(t) in [0,1] to be the (normalised) valuation
of a generator in Ok of the annihilator of its cokernel.

We remark that these invariants are qualitatively ‘finer’ than degrees defined by Fargues in [21], and
are exactly the reason we succeed in better understanding p-adic geometry of Hilbert modular varieties
of level at p.

Let

deg((X,0)/S) =) > deg((X,C)/S)(t)

T t
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where ¢ ranges over 1 < t < e and 7 ranges over 3. By definition, deg((X,C)/S) ranges over [0, ef].

We consider ‘Breuil modules’ of p-torsion subgroups of filtered principally polarisable Barsotti-Tate
p-divisible groups over S. Because it seems difficult (if not impossible, perhaps) to ‘integrally’ incorpor-
ate Pappas-Rapoport filtrations (which are inherently ‘of de Rham’) into Breuil modules of p-torsion (or
worse still, w-torsion) subgroups, we instead work directly with de Rham crystals over the ‘truncated’
valuation ring S. To this end suppose e > 1; when e = 1, we simply make appeal to calculations with
Breuil modules in Section 3 of [31] which is our model for the construction in the following. Parenthetic-
ally, Section 3 of [31] is based on Kisin’s proof in [37] of a conjecture of Breuil when p > 2; the conjecture
itself is also proved by Kisin [36] in the connected case when p = 2 and by Kim, Lau, Liu in the general
p = 2 case, and the argument in [31] works verbatium when p = 2.

Fix a filtered principally polarisable Barsotti-Tate p-divisible group X over S. For every 7 in ¥ and
1<t<e,let
GrNV(XV[ 1/8)-(t) = D(X"[p]/S)s/Lie” (X"[p]/S)-(t 1)
and let D(XV[p]/S),(t) denote the free rank 2 module over O

ker(r®1—1@7; |Gr™Y(XV[p]/9),(t) = (§®1—1@7;) " Lie" (X [p]/S)- (t—1)/Lie” (X [p]/S)-(t-1),

which contains the rank 1 @x-module Gr¥(XV[p]/S),(t) by definition. Let D(XV[p]/S
pull-back of D(XV[p]/S).(t) to S; it is a rank 2 module over O . Let D(Yv [pl/k)-(t)
back to the closed fibre Speck; it is a rank 2 module over k.

+(t) denote the
10

)
denote the pull-

Let
AL : D(XV[p]/S),(t) — D(XV[pl/S), (t — 1)

denote the map defined by multiplication by w if t > 1 and
AL D(XY[p)/8)+(1) — DX [p]/S); 10 (e)

denote V o (u®~1)~! if t = 1. By definition, the image of AL is exactly Gr"(X"[p]/S),(t —1) if ¢t > 1
and GI‘V(XV[p}/S)f—IOT(e) ift=1.

Let C denote a filtered Raynaud submodule scheme of X[n] and let Y = X/C be the filtered
principally polarisable Barsotti-Tate p-divisible group over S. Let D(C/S),(t) denote the kernel of
D(XV[p]/S) — D(YV[p]/S)-(t). If G is one of the XV[p], YV[p] or C, let D(G/S) (resp. D(G/k))
denote the pull-back of D(G/S) to S (resp. Speck).

The image of D(XV[p]/S).(t) in D(YV[p]/S),(t) defines a rank 1 submodule over & and con-
sequently D(C/S),(t) is free of rank 1 over 0. This follows if it holds over S, which in turn follows by
Nakayama if the image of D(Y\/ [p]/k)~(t) defines a rank 1 subspace of D(?V [p]/k)~(t). But this follows
from Lemma 34.

Indeed, given X over k, the existence of a filtered Raynaud ]F vector subspace scheme of X over k is
equivalent to the existence of a family of subspaces =% of D(X [ 1/k)+(t) of rank 1 for all 7 in 3 and
1 <t < e satisfying the conditions:

e AL(EL) c EI71if ¢t > 1 (in which case, AL is multiplication by u);

e and AL(E) c =

—e
—f-lor

if t = 1 (in which case Al =V ou!~¢).

To see the claim, suppose firstly that one is given a family of vector subspaces = as above As one can

immedlately see, by definition (observing that both have the same rank over k), that D(X [ 1/ k) (1) =
u"t'D(X [ |/k)» where D(X [ |/k)- denotes the 7-isotypic part of the Dleudonne module D(X [ 1/k)
over k, define =, to be the e-dimensional vector subspacc ul=¢EL of D(X ' [p]/k), and E = @ g, C
D(Yv [p]/k). Tt is immediate to see that, for every 7, =, satisfies, for the Verschiebung V on D(X [ 1/k),
VE, = V(@' °E]) CEfr,, Cu'EfTL C oo CumCTVELL = S,
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and therefore = is a Dieudonne submodule of D(Yv [p]/k) with its quotient D(yv [p]/k)/Z free of rank
1 over F ® k. By Dieudonne theory, there exists a Raynaud F-vector space scheme C' of rank 1 in X|[p]
such that its corresponding Dieudonne module is exactly =.

On the other hand, the converse of the claim is clear and will be left unattended.

Suppose that &, &L, form a O-basis of D(XY[p]/S);(t) such that & | defines a @ -basis of
D(C/S),(t) in D(X"[p]/S)(t), and &L , maps onto a € k-basis of the image of D(XV[p]/S) in D(YV[p]/S)-(t).

For every 7, we may and will assume if ¢ > 1
Lt 1gt—1
Atr( 5—1) =& R‘tr 57-,1

and -
AL(Ers) = ST + 6 T

where RL™L, S TE=1 are elements of Ok and RL™L, T!~1 are in particular units in @ ; and similarly
ifr—1,

A}'( 71',1) = gpf_loTRgflngfefloT,l
and

A}_(§71_72) = feflngfe*lo'rJ + £X{7107Tf6*107—§%3*107-’2'

By construction, if ¢ > 1, it is an easy exercise to check:

Lemma 39 Fiz 7 in 3 and 1 <t < e. Then x'™ ' equals exdeg((X,C)/S).(t — 1) while pi=' satisfies
the inequality pi=1 > ex(1/e — deg((X,C)/S)(t — 1)) = exdeg((X/C, X[r]/C)/S)(t — 1).

Proof. To see the first assertion about y!~!, observe that x! computes the truncated valuation of
the annihilator in &'k of Coker(Gr¥ (XV[p]/S).(t — 1) — Gr”(YV[p]/S),(t — 1)). Since the normalised
truncated valuation of the uniformiser £ is e /e, the assertion follows.

The assertion about pt~! follows as ALD(C/S),(t) is contained in ker(Gr"(XV[p]/S),(t — 1) —

-

GrY (V¥ [p]/S)s (t - 1)). D
Similarly,

Lemma 40 Fiz 7 in 3. Then Xf-10, €quals exdeg((X,C)/S)s-107(e) and p_.,, satisfies the inequality
b rar 2 exc(1fe — deg((X, C)/S)y-10r(€)) = excdeg((X/C, X[1]/C)/8)s10r (e).

Let D be another Raynaud submodule scheme of X [r] distinct from C. For every 7 and 1 <t <,
we may suppose that the image of D(D/S).(t) is generated by &, 4 L£L , for some element el in Ok;
and if ¢t > 1 -

AL(Err+ergry) =€ TUTNER + )
andift =1 o
A71'( 71-,1 + 671'571',2) = fpiilOTUfilo'r(ffeflor,l + 6?*107'€$*10T,2)

for some unit U! in O, where p&~, when ¢ > 1, similarly satisfies the inequality
pr~ = ex/e — deg((X, D)/S)-(t) = deg(X/D, X[r]/S)(t)

as in the case for C' (Lemma 39). One can readily observe that e’ is non-zero in @ for every 7 in 3
and 1 <t < e; otherwise etT = 0 for every 7 in S and 1 <t <e, and C' would equal D which contradicts
the assumption that C and D are distinct.

In the light of Lemma 39 and Lemma 40, let x%~ denote deg((X, D)/S).(¢) for brevity. The cokernel
of the embedding of D(D/S),(t) into D(X"[p]/S)-(t) is generated by the image of £ ,, and as its image
is

AL(EL) + Or(E a6 = (€ T = SI el en, + Ox (€ +e1es)),
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_Gt=lgt—1 I~

4 Similar when ¢t = 1.

ex /e minus the truncated valuation in @ of ¢Xr  Tt=1 computes y:~

Equating the coefficients of §t ! and 537_21 if ¢t > 1 and ffe,loﬂ and 5;11%2 if t = 1, we have the
¢ ¢
following equations (which, for ease of reference in the following, we name ST , and ST ) ift >1

1

t t—1 _ _ t—1,~ _
Lis @RS — ot g

and . . .
o0 b Tt =g el
andift =1 )
3 N R, o Her)S§ = 107'_£f 1°TUf lor
and

31 X5-1 e 3
7,2 " ( )6 = OTT lor _ff OT&f 107-Uf lor

where, by slight abuse of notation, ¢ again denotes the absolute Frobenius on &g. From 3 5'S, wWe
deduce the following Lemma 41 and Corollary 42 which are not strictly necessary for our proof of the
main theorem but serve as a ‘sanity check’:

For every t > 1 and 7 in 3, let s[x] denote
X X
and, for every ¢t > 1 and 7 in 3, let s&~[x] denote
Xt

Similarly define st [Y] and s%7[x] with X in place of x; and s [p] and st "[p] with p.
For brevity, for every ¢t > 1 and 7 in X, let

def ~
o st ] — 5L 7]

and, for every ¢t > 1 and 7 in 3,

b7 S sty — st ().
By Lemma 39,
st < L[ + LX) — (e — (t — )ex /e
and
sb7 < st ] + 857 — (= Dexc/e
hold.

Lemma 41 Fiz 7 in'Y and 1 <t <e. The valuation of etT 1s calculated by

(Y ol N, 4TV Vst )/ - 1)
1<N<f

ift > 1 and by
(> pm N Vel )/ - 1)

1SN<f
ift=1.

Remark. This is an analogue of Lemma 3.3 of [31].
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-1

—1,~ 2
Proof. Supposet > 1. Since ef,, = (f";w Ufto;l/@;w T Nel ! and Aftlo. - .0A%0AlL o oA, =

_ Tfor J=for o for ™"
u®~" o Vo (u"")~! is the Verschiebung V on D(X[p]/S)jor(t), one may deduce that the image of e},
by V is computed by

=1~ o b=l _ 1~ 1 e o e to~ t
QN (EPror UL 0 er T ) - N (€P1on U, J€X10n Ty ) (607 Us JEX7TE) -+ (€97 UL JE T} el
In other words, the p-th power of £/ is &f, times

t—1 1 e t t—1,~ 1,~ e,~ t,~
Xior Tt Xfor TP(X5++x5) t—1 1 e IND /¢Psor oot piil +p(ps ™+ tp T ) prt—1 1 e t\p
g fo fo TfOT .”TfOT(TT TT) /§ fo fo U '.'UfOT(UT UT) .

for

Similarly, the p-th power of el is E%OT times

P0G x) (e L TP fep(or e ) (e L g hyp,

T

Repeating the argument, we get the assertion. [

Corollary 42 For every 1 <t <e and T in f],

E1§N§f pf_N X%NOT + -+ X;;(l).,_ +p(X§N—1OT + -+ X?N—loT))

t—

= Z1§N§fpf7N 5fNOT[X]+p5$NOT[X})

> Yiene PV (= 1)ex /e +ple— (t —1))ex /e — (5;}\707&] +P5§NOT[>?])>
= Yien<es PV ((ex/e - X;JVNOT) +t (ex /e — X?z?cl,’:) +pler/e — X;}VNfloT) +---+plex/e— X:ﬁlw))
ift >1 and
Sien< PPV (X%NOT +ot X$NOT)
di<n<y pfst;Nor[X}
Z Di<n<s pN(ex/e - E%NOT[)N(])
= Cianes PV ((er/e = xfiig,) 4o+ (ex/e = X))
when t = 1.

Proof. This follows from the preceding lemma, noting that the valuation of . is non-negative and
t

Xe = P2 SXE XY —ex /e O
Remark. Since x! = exdeg((X,C)/S),(t) and xt~ = exdeg((X, D)/S),(t), the case when t = e =
1 recovers Corollary 3.4 in [31].

The following three lemmas replace calculations with Breul modules in [31] and essential for our proof
of the main theorem.

Lemma 43 Fiz 7 in Y and 1 <t <e. Ift > 1 and if x.~' =0, then x.™~ # 0. Similarly if x¢ = 0
then x&™~ # 0.

1

Proof. Suppose t > 1 and xt=! = 0. If =1~ = 0, it would follow from Lemma 39 that p'~1~ = ex /e.

Uﬁfl/ﬁxi_lTﬁfl)H’l, and therefore the

T

t—1,n~

t
However, it then follows from the equality ?:T , that et = (&P

truncated valuation of €& would be greater than and equal to ex /e and £ would be 0 in O, which is
a contradiction. The case when ¢ =1 is similar. OJ

We know a great deal at the ‘far end of the valuation hypercube’:

Lemma 44 Suppose that there exists T in S and 1 <1< e such that

e cvery Xt = e /e as T ranges over Sand1<t<e, except when T =1,t=1—1, andl > 1 (resp.
I =1), at which 0 < Xﬁrfl < eg/e (resp. 0 < le;lof < eg/e) holds,
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e the induced map AL on GrY(XV/k),(t) does not vanish except when T =1 and t = 1 at which it
does.

Then pt. = 0 for every T in 3 and 1 <t <e expect when =1 andt=1—1.
Pr Y

Proof. Suppose firstly that either 7 is not t or if 7 = {, ¢ is neither [ nor [ — 1. In this case, since
the image of ALt is Gr¥(XV/S),(t) and £X- = 0 in O, GrV (XY /S),(t) is generated by ¢t . It then
follows from the second assumption that pi=1 = 0.

Suppose that 7 = f and ¢ = [ — 1. In this case, Gr(XV/S).(t) is generated by AL (¢E) =
&+ X £ 5 (up to multiplying &L, and &L, by units in @ if necessary), since it follows from Lemma
39 that p. > er /e — xt >0 and x% > 0 that S has to be a unit in 0.

Because x!™! = ex /e,

— t t—1 t _
ALGr(XY/8) (1) = AL, +€78,) = (€7 + €787
and it follows from the second assumption and x% > 0 that pi=! is zero. O

Maintaining the notation and assumptions in Lemma 44, we have:

Lemma 45 o The valuation of €t is zero for every T in S and 1 <t < e except when T = 1 and
t=1.

° ptT’N:eK/eforeveryrefl and 1 <t<e except whent=1andt=1—1 orl.
e The valuation of St is zero for every T € S and 1<t <e except when T = tandt=1-1.

Proof. Suppose firstly that the (truncated) valuation of 5?1 is positive. It then follows from the

1+1
equation 3T,1 and plT = 0 by Lemma 44 that pT’N = 0. Combined with XZT = ek /e and the valuation

I+1
of e’:‘ifl being non-negative, it follows from ST , that the valuation of 6?'_1 is non-positive, which is a
contradiction. The valuation of 5?1

If ¢ is an integer satisfying [ + 1 < ¢ < e and if we suppose that the truncated valuation of 51% is zero,

is therefore zero.

t+1 N ) )
the equation 31‘ o then forces pfr’ = ex /e and the truncated valuation of sfrJrl to be zero, in order to

attain the valuation of e/T! to be non-negative (because x’ff = e /e). As the valuation of EfrJ“l is zero,
~ . t+1 . . .
p‘]i =0 and pff’ = ex/e, it follows from ST , that the valuation of S}F is zero. Continuing the argument

1
(when ‘t = €’, we use 3T for 7 =1,fo1,... and so on), we get the assertion.
The case when 7 = f and t = — 1 is proved in the proof of Lemma 44.0J

Still maintaining the assumptions of Lemma 44,
Corollary 46 x“~ = ek /e for every T in Sand1<t<e except when 7 =1 and t = [.

Proof. Suppose that either 7 is not t or if 7 = {, ¢ is not [. It follows from Lemma 45 that the
t
valuations of % and S. are both zero. As x%™~ is computed by e /e minus the valuation of {Xr — Stet

7

and x! = ex /e by assumption, the assertion follows. []

6 Overconvergent companion forms are classical

. . I PR .
Results in this section establish links between geometry of the fibre X xp,, and p-adic geometry of XE®
defined in terms of degrees.
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6.1 ‘Global’ mod p and p-adic geometry

A non-cuspidal point € of X corresponds to a closed point of XEF, thence to an S-point of XX |

where S = Spec Ok for the ring O of integers of a finite extension K of L with residue field k. Let ¢

denote its image in XIP(R’R_a by the forgetful morphism 7 : XIF;%;,R_& — X;R’R_a. By &, we shall mean the

S-point (S = Speck) of the r-scheme Y?}W defined by ¢ and let ¢ denote its image by T : Y;?W — YI;R.
We shall freely use the invariants defined in the previous section for the corresponding component of the
Barsotti-Tate p-divisible group (which is filtered and principally polarisable), given respectively by ¢ and

E.

Remark/Definition. By slight abuse of notation, we often write ygo »(£/S) to mean the vgo .-
invariant of the source of the isogeny corresponding to &.

Proposition 47 The formal completion ﬁKIW of YIP(I?W at € is the tensor product over flp for all p in
SP Of

QKNSR 241/ (7o20)
where the left-most ranges over those 1 < t < e, which do not lie in VRZ’I(E) N ’yRZ’I(g), while the
right-most tensor product is over the set of 1 < t < e, which lies in vrz .(§) N yrz,-(§) ; the formal

I —PR. .
completion Ry of Y i is

where the tensor product ranges over all f)p x{l1<t<ep} forpin Sp.

Proof. Follows from local model calculations. [

On the Raynaud generic fibre sp~*(§) C X;?&R_a, there are ‘local parameters’, i.e., analytic functions
which specialise to xt, v,z ut; we shall denote them by xt,yt,z%, ul satisfying ytz! = m, for every 7

in 3,.

Proposition 48 The formal completion of YER at € is the tensor product over 2p for all p in Sp of

QOx [0 Ok [y, 2L))/ (vizh — mp)
where the left-most ranges over those 1 <t < e, which do not lie inﬁuRZ’T(E) ﬂ:yRZ’T(E) while the right-
most tensor product is over the set of 1 <t < ey, which lies in vrz - (§) Nyrz,~(§); the formal completion

of XER at ( is
®ﬁK[[Utr]]
where the tensor product ranges over all f]p x{l1<t<ep} forpin Sp.

Proof. This follows from local model calculations. [J

Definition. Let £ be a point of X]P;?V’VR_&. When £ is not a cusp, it corresponds to an S-point (A, C)
of XFR . where S = Spec Ok for the ring O of integers of a finite extension K of L (whose normalised
valuation takes p to 1). For every p, 7 in fip and 1 <t < e, that we fix, we shall define a measure

degifl{V’vR_a(g)T(t) of (over)convergence/supersingularity on XE?‘;JR_'& that may be thought of as a ‘local

model’ of deg(§),(t) defined earlier and of seeing intrinsic geometry of X[P(PI{V’VR_a (hence our notation, but

we apologise for our nomenclature).
Firstly if £ is indeed a cusp, let degiﬁiv’vR_a(ﬁ)T(t) = deg(&),(t). If £ is not a cusp, and

o if 1 ¢ vz - (€/S) and t €z (€/5), let degicry (/) (1) = 1/ey;
o ift € vry,(E/S) and t € YRz, (£/S), define degy it *(£/S)-(t) to be the minimum of 1 and the

valuation (on Of) of yi evaluated at the point &;
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o ift € ury - (€/S) and t € YRz, (£/5), let deglii™(£/S),(t) = 0.

If ¢ is a point of X;R’R_a, define degI;(R’R_a(C)T(t) for 7 in £, and 1 < t < e, as follows: if ¢ is not a
cusp and if ¢ € ygo -(C/S), define degh"*(¢/S),(t) to be the minimum of 1 and the valuation of u’

evaluated at the point (; otherwise let degl;;R’R_a(C)T(t) = 0.

These deg?f‘;vR_a(f)T(t)’s are the invariants first introduced by Coleman in the curve case; and are
subsequently used in gluing overconvergent eigenforms in [11], [10], [9] in the modular curve case and
[31] in the unramified Hilbert case, in order to to construct classical weight one forms.

Lemma 49 degpya *(€),(t) = deg(€),(t).

Proof. 1t suffices to show the equality when £ is non-cuspidal. Suppose that it corresponds to an
S-point (A, C)/S and let B denote the target of the corresponding isogeny A/C for brevity. If ¢ does not
lie in vry (&) but lies in yryz,.,(€), the map Gr¥ (A" /8),(t) — Gr¥(B"/S).(t) on the special fibres in-
duced from the isogeny is zero, hence the normalised valuation of GrY(AY/S),(t) — Gr¥(BY/S).(t) is 1.
Similarly for the case when ¢ lies in VRZ’T(E) but does not lie in Yz, - (€). When't € VRZ,r (€) O'yRZ’T(E), we
note from Proposition 48 that the coordinates y. and z! are chosen such that, for example, the annihil-
ator of coker(Gr¥(AY/S),(t) — Gr¥(BY/S),(t)) is locally defined by y! evaluated at £&. As deg(£/S),(t)

is defined to be its valuation, the assertion follows. [

Definition. In the light of the lemma, we shall let deg(¢/S),(¢) denote deglj(R’R_a((/S)T(t). In fact,
it is also possible to define deg(¢/S).(t) ‘more directly’.

6.2 Canonical subgroups and analytic continuation in a tubular neighbour-
hood of the multiplicative ordinary locus

In this section, we prove a few results constructing canonical subgroups of Hilbert-Blumenthal abelian
varieties A of Pappas-Rapoport type as ‘canonical’ Raynaud vector subspace schemes of A[p] for every
place p of I’ above p. As it does not seem possible to ‘see’ Pappas-Rapoport filtrations on Breuil
modules, linear algebra calculations ‘on points’ does not take us far; perhaps enlarging coefficients of
Breuil modules (in the sense of Section 1.2 in [37]) to allow roots of Eisenstein polynomials and hoping
for (faithfully flat) descent might be one possible approach. It may also be possible to follow Fargues
([20]) and construct a ‘canonical’ subgroup of the p-torsion subgroup A[p], and subsequently single out
its F-stable part killed by all p.

We, on the other hand, take the Goren-Kassaei approach ([24]) of making essential use of geometry of
relevant moduli spaces, in order to construct ‘canonical subgroups’. Note that it is important to construct
canonical subgroups for HBAVs, whether A[p] is BT level one or not for every p, for it is humbly used
to establish that weight one specialisations of Hida (nearly ordianary) families define overconvergent
eigenforms.

Proposition 50 Let & be a point over S of YE(FI{W, Fiz p, 7 in S = f]p and 1 <t < e =e,. Suppose
that

o ift>2,t—1 lies in vrz +(£/S) and that t lies in Yrz - (£/S);
o ift =1, e lies in vpy j-10-(£/S) and that t =1 lies in Yrz,-(£/S).
For w* :ﬁK — ﬁmw, the following equations in ﬁmw hold:
Ift > 2, and
(I) t lies vz, -(€/S) and t — 1 lies in yrz.-(£/S), there elements L and pt=1 in ﬁ;lw such that
T (ul) = ALyl + pl W)

where, by slight abuse of notation, Sfl(p) denotes the p-th power of St=1;
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- — 2 X
(II) t lies vrz, - (£/S) and t —1 does not lie in yrz ~(£/S), there exists an element vt in Ry, such that
w() = oAt

— — — 2 X
(II1) t does not lie in vrz . (£/S) and t —1 lies in Yrz. - (£/S), there exists an element pi=' in Ry, such

that

m(uy) = i,

(IV) neither t lies in vrz +(€/S) nort —1 lies in yrz..(£/95)

Ift=1, and

- — 2 X
(I) t =1 lies vgz j-10,(£/S) and e lies in yrz - (£/S), there elements ~; and pl in Ryy,, such that

7 (ub) = yhvi + a8

PR JE = X
1I) t = 1 lies vgy -10,(€/S) and e does not lie in yrz.~(£/S), there exists an element v} in R such
of ) T Klw

that

" () = vk

(III) t = 1 does not lie in vry j-10,(£/S) and e lies in Yrz,-(§/S), there exists an element Pi-10, N

~ X
Ry, such that

" (u}') = pﬁflo-/—z;y;)or;

(IV) neither t =1 lies in vrz j-10,(£/S) nor e lies in Yrz,-(£/5)

Remark. This is a generalisation of Lemma 2.8.1 in [24]. The case t = e = 1 recovers their result.

Proof. We shall only sketch a proof, which is a generalisation of the proof of Lemma 2.8.1 in [24]. For
brevity, for every 7 in X, let vrz  (resp. Yrz,-) denote vrz -(§/S) (resp. Yrz,-(£/S)). An irreducible

components of Y?{TW passing through £ is parameterised by a subset J = >, Jrof Jrz =3 Jrz,r where
JRz,r = VRz,r NYRZ,r in the sense that, if ﬁKIW’J denote the ideal of ﬁKIW generated by ¥ for all ¢ lying
in Jrz, - —J- and Z_ for all ¢ lying in J, as 7 ranges over 33, the intersection Spf (ﬁKIW/iKle)ﬂSpf ﬁmw
is the formal completion at E of the irreducible component Y;IW’Z‘, where ¥ ; = (vrz 77, Yrz,J,+) defined
by

® VRz,Jr = Rz, — Jr,

® vrz. - =1{1,...,e} =Rz,

We now fix 7 in ¥ and 1 < ¢ < e as in the assertion of the proposition. We deal with the case (I) and
leave the rest as an exercise for the reader. There are four different ‘types’ of J, C Jryz r to consider:

A) both t — 1 and ¢ lie in J,;
B) both ¢t —1 and ¢t lie in Jrz - — J;;

(A)
B)
(C) t —1 lies in J, while ¢ lies in Jgz » — J-;
(D)

D) t —1 lies in Jrz,r — J; while ¢ lies in J;.
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(I-A): Since ¢t — 1 lies in J;, ¢t — 1 does not lie in gz j,r, hence ¢t — 1 lies in vrz, jr. Also ¢ lies in
YRz~ and in J., therefore ¢ does not lie in yrz, s .. As any point ¢ in Y};IW,EJ satisfies the conditions

that vrz , () contains vrz, - (and yrz - () contains yrz s ), t — 1 lies in vrz (). It then follows from
Proposition 35 that ¢ lies in yrz,-(¢) if and only if ¢ lies in yro ().

(I-B): Since ¢ lies in yrz, - but does not lie in J., ¢ lies in yrgz, jr. Also t —1 lies in yrz » but does not
lie in J;, hence ¢t — 1 lies in yryz, s, and consequently ¢ — 1 does not lie in vryz j,. It then follows from
Proposition 35 that, for any point ¢ in Y;Iw’zj, t — 1 lies in vry, - if and only if ¢ lies in vgo - (C).

(I-C): As t lies in gz, but does not lie in J;, ¢ lies in yrz s-. Also t — 1 lies in J;, hence ¢t — 1 does
not lie in ygz j -, and t — 1 lies in vRy, s ,. It then follows from Proposition 35 that, for any point (in

Y;Iw,zj7 t always lie in YEO,r (Z)
Applying (I-A) to J = Jrz and (I-B) to J = @, as well as a simple but tedious calculation that

N I k1w,s, where J ranges over the subsets J of Jrz satisfying the conditions in (C), is generated by y.
and 7.1, we get the assertion in (I). The other cases may be similarly deduced. O

Corollary 51 Let € be a point over S of XIF;%;,R_& and ¢ denote its image by m in X;R’R_a, Fizp, 7 in

2:2, and 1 <t <e=-ey. Then

e the conditions t > 2, t — 1 lies in vrz(£/S), and t lies in yrz-(£/S) holds, if and only if
deg(§/S5)-(t —1) < 1/e and 0 < deg(£/95)(t);

e the conditions t = 1, e lies in Vpz5-10-(¢/S), and t = 1 lies in yrz,+(/S) hold if and only if
deg(£/S)j-10-(e) < 1/e and 0 < deg(£/S)-(1).

Suppose that the preceding (equivalent) assertions hold. Then, fort > 2,

(I) deg(¢/S).(t) equals the normalised valuation onsp~1(€) of (viyt+pt™ 1zltfl(p))(f) if 0 < deg(&/9),(t—
1) and deg(€/8) (t) < 1/e;

(II) deg(¢/S)7(t) = deg(§/5)-(t) if deg(¢/S)-(t — 1) = 0 and deg(&/S)(t) < 1/e;
(III) deg(¢/S)7(t) = p(1/e — deg(£/S)7(t — 1)) if 0 < deg(&/S);(t — 1) and deg(&/S)(t) = 1/e;
(IV) deg(¢/S)7(t) = 1/e if deg(§/S)-(t — 1) = 0 and deg(¢/S)-(t) = 1/e.

Whent =1,

(I) deg(¢/S)-(1) equals the normalised valuation on sp~1(€) of(%y,—i—pf_lw f(lw)(’f) if 0 < deg(£/S)s-10-(e)
and deg(£/S)-(1) < 1/e;

(11) deg(¢/S)+(1) = deg(¢/5)-(1) if deg(§/S)j-10-(e) = 0 and deg(£/S)-(1) < 1/e;
(1) deg(¢/S)7(1) = p(1/e — deg(¢/S)j-107(€)) if 0 < deg(¢/S)j-107(€) and deg(¢/S)-(1) = 1/e;
(IV) deg(¢/S)7(1) = 1/e if deg(£/S)j-10-(e) = 0 and deg(¢/S),(1) = 1/e.

Proof. This follows immediately from the definition of deg(¢/S),(t) and Lemma 49. O

For every p, let C]P(}I{V’VR'; * (resp. D?I)”WRPE) denote the admissible open subset of points £ over S of

XIF;?WR # such that

e for every t > 2 and 7 in = f)p,
deg(&/S)-(t) + pdeg(§/S)-(t — 1) <p/e
(vesp. deg(§/S)-(t) + pdeg(§/S)-(t — 1) > p/e)

holds;
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e for t =1 and every 7 in 3,
deg(£/5)-(1) + pdeg(§/5)j-10-(e) < p/e
(vesp. deg(&/S)-(1) + pdeg(§/S)s-10-(e) > p/e)
holds.

Let C[P;FI{V’VR_B‘ denote the intersection, over all places p above p, of C’Ip(%fga, while D?I{‘;VR_a denote
the union of (), D?fv’vﬁa) N (Npgs Cg{‘i{; *) as 3 ranges over the set of non-empty subsets ¥ of the
set of places above p. By definition, if a point of X?I{‘;R'a lies in CIF;FI{V’VR'a U D?I{‘;VR“, then it lies in
(PRR-a | pPRR-a ¢

KTw.p Kiwp  for every p.
Let C;%R_a denote the admissible open subset of points ¢ over S of X;R’R_a such that

e for every t > 2 and 7 in f],

deg(C/5)-(t) + pdeg(¢/S)-(t —1) <p/ey
holds;

e for t =1 and every 7 in by

deg(¢/5)+(1) + pdeg(¢/S)j-10-(€) < p/ep
holds.

Let C'f(R’R'a denote the intersection, over all places p above p, of C’Ei’R_a.
Remark. These admissible open sets (the loci of ‘canonical subgroups’ and ‘anti-canonical sub-
groups’) generalise those defined in Section 5.3 in [24]. If ¢ = e = 1, we recover their results.
oy ) PR,R-a o . PRR-a o
Proposition 52 Let £ be a point over S of X, 7. " and ¢ denote its image by m in X . Fixp, T
nX =%, and1 <t<e=e,.
Suppose that

o if2<t<e—1,
deg(&/S)-(t + 1) + pdeg(§/S)-(t) < p/e,

deg(£/5)-(t) + pdeg(£/5)-(t —1) <p/e;

o ift=ce¢,
deg(£/S)jor (1) + pdeg(£/S)-(e) < p/e,

deg(&/5)-(e) + pdeg(§/S)-(e — 1) < p/e;

o ift=1,
deg(&/8)jor (2) + pdeg(£/9)-(1) < p/e,

deg(£/5)-(1) + pdeg(§/5)j-10-(e) < p/e.
Then deg(¢/S)-(t) = deg(&/S)-(t) holds.

On the other hand, suppose that

o if2<t<e,
deg(£/5)-(t) + pdeg(§/5)-(t — 1) > p/e,

o ift=1,
deg(§/5)or (1) + pdeg(£/S5)-(e) > p/e,
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Then
deg(¢/9)7(t) = p(1/e — deg(§/5)-(t — 1))
holds if 2 <t <e, and
deg(¢/S)or (1) = p(1/€ — deg(£/5)-(e))
holds if t = 1.

Remark. This is a generalisation/refinement of Lemma 5.3.4 in [24].

Proof. Firstly, we sketch the first case when 2 < t < e — 1. From the first given inequality, one
may deduce immediately that deg(£/S)-(t) cannot be 0 and therefore either deg(&/S),(t) = 0 or 0 <
deg(§/5)-(t) < 1/e holds.

Suppose deg(£/S)-(t) = 0. In which case, ¢ does not lie in gz -(£/S) by definition. On the other
hand, by the second given inequality, deg(¢/S),(t — 1) can not be 1/e, hence t — 1 lies in vrz, . (£/S). It
follows from Proposition 36 that ¢ does not lie in yro - (£/5), hence deg(¢/S),(t) = 0 by definition.

Suppose 0 < deg(£/S)-(t) < 1/e holds. As deg(£/S)-(t — 1) cannot be 1/e, it follows that ¢t — 1 lies
in vrz - (£/S). On the other hand, deg(¢/9),(t) cannot be 0, and ¢ lies in Yrz - (£/S). We there see that
the assumptions of Proposition 51 are satisfied.

If deg(&/S)-(t—1) = 0, then the case (II) applies, and deg(¢/S),(t) = deg(£/5),(t). If deg(&/S),(t—
1) > 0, then the case (I) applies, and deg((/.S)-(t) is computed by the normalised valuation v of (yLyt +
pt 2P (€) for some units 7% and pt=! in Ry However, as deg(¢/S5), < p(1/e —deg(¢/S),(t—1)), it
follows that the normalised valuation of pfy! evaluated at £ is strictly less than p(1/e—deg(¢/S),(t—1)) =

p(1/e = v(y! () = pr(zt1(€)) = pr(pt 127 1()) = w(pt 12 7 (¢)), and therefore deg(C/S)- () =
deg(£/5)+(1).

We shall prove the second assertion when 2 < t < e. By the given inequality, deg(¢/S),(t —1) > 0
and therefore either deg(£/5),(t —1) =1/e or 0 < deg(&/5)-(t —1) < 1/e holds. On the other hand, it
also follows that deg(¢/S),(t) > 0 and ¢ lies in Yrz - (£/9).

Suppose that deg(¢/5),(t—1) = 1/e. In which case, t—1 does not lie in vrz ,(£/S). It therefore follows
from Proposition 36 that ¢ does not lie in vgo - (£/S), and deg(¢/S)-(t) = 0 = p(1/e —deg(¢/S),(t —1))
as desired.

Suppose that 0 < deg(¢/5),(t—1) < 1/e. In which case, t—1 lies in vrz - (£/S). If deg(¢/9),(t) = 1/e,
then it follows from Corollary 51 that deg(¢/S),(t) = p(1/e — deg(£/S)-(t —1)). If 0 < deg(&/5),(t) <
1/e, it also follows from Corollary 51 that deg(¢/S).(t) is computed by the normalised valuation v of

(’yﬁyi—l—pt;lztfl(p))(ﬁ) for some units in Rx1y. However, the given inequality implies that deg(¢/5), () >
p(1/e—deg(¢/S),(t—1)), hence v(7tyt(€)) > v(pt= 12 ) (€)). Tt therefore follows that deg(¢/S), (t) =
V(pi_lztfl(p) (€)) = pr(zt=1(€)) = p(1/e — deg(&/S),(t — 1)). The other cases follow similarly. (]

Lemma 53 Fizp and 1 <t <e=e,.
o [f2<t<e—1, suppose that the following hold
deg(§/9)+(t) + pdeg(§/S)-(t — 1) < p/e

and
deg(£/S)+(t + 1) + pdeg(§/S)-(t) > p/e;

e ift =e, suppose
deg(§/5)-(e) + pdeg(§/S)-(e — 1) < p/e

and

deg(§/S)for (1) + pdeg(§/5)-(e) = p/e;
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o ift =1, suppose

deg(£/5)7(1) + pdeg(§/S)-10-(e) < p/e
and

deg(€/5)-(2) + pdeg(£/5)-(1) = p/e.
Then deg(¢/S)-(t + 1) + pdeg(¢/S)-(t) > p/e. In particular, { does not lie in CPR Rea,

Remark. This is a generalisation of Lemma 5.3.6 in [24].

Proof. We prove the case 2 < t < e—1. Since deg(£/5),(t—1) cannot be 1/e, t—1 lies in vrz, - (£/S).
Also since deg(£/5)-(t) cannot be 0, t lies in yrz - (£/S). There are four cases (corresponding exactly to
the four cases in Proposition 51) to deal with:

(I) deg(&/5)+(t —1) > 0 and deg(§/5)-(t) < 1/e;
(IT) deg(&/5)-(t —1) = 0 and deg(§/5)-(t) < 1/e;
(IT) deg(§/5)-(t —1) > 0 and deg(§/5)-(t) = 1/e;
(IV) deg(&/5)-(t —1) = 0 and deg(§/5)-(t) = 1/e.

Suppose (I). In this case, deg(¢/S),(t) is computed by the normalised valuation of (y£yL+ptzs~ 1(p))(f).

As it follows from the first inequality in the assumption v(y(€)) < v(z~ 1(p)(f)) that deg(¢/S)-(t) >
deg(¢/5),(t). On the other hand, deg(&/S),(t) is not 1/e and it follows from the second inequality in
the assumption that deg(&/S),(t + 1) > 0, hence ¢ + 1 lies in Yrz - (£/9).

If deg(¢/S),(t+1) = 1/e, combined with deg(¢/S)-(t) > 0, Corollary 51, (IIT), applies and deg(¢/S) - (t+
1) =p(1/e —deg(&/5)-(t)). It then follows that

deg(C/S)-(t +1) + pdeg(C/S5)-(t) = p(1/e — deg(§/5)- (1)) + pdeg(£/5)-(t) = p/e.

If, on the other hand, deg(¢/S)-(t + 1) < 1/e, Corollary 51, (I), applies, and deg(¢/S).(t + 1)
is computed by the normalise valuation v of (yiFlyt+l 4+ ptzt® ))(5). The second inequality in the

assumption implies that v(ylyt+1(€)) > v(ptz P (€)), hence deg(C/S),(t + 1) > pr(zL(€)). It then
follows that

deg(C/S)-(t + 1) + pdeg(C/S)-(t) = pr(zz(8)) + pr(y7(€)) = pr(y7(€) +2-(8)) = p/e.

The other cases can be proved similarly. O

Proposition 54 Wﬁl(CIP;R’R_a) = O}P;PI{VLR_& U D?I{JVR_a

Proof. This can be proved as in Section 5.3 of [24]. Firstly observe that the proof of Proposition 52
proves that 7~ 1(Cg v ™) D O F* U DR,

Suppose that £ does not lie in C’Z?WR ) U DE(II{WR *. Then there exists p such that ¢ does not lie in
PR,R-a PR,R-a PR.R-a

Cyra » YDk, - Because £ does not lie in DKIW’p in particular, there is a pair of T in = ip and
1<li<e=¢ such that the following hold:

deg(£/5)+(1) + pdeg(£/S);(1 — 1) < p/e

if { >1, or
deg(&/5)1(1) + pdeg(§/S)-101(€) < p/e

when [ = 1. We ’order’ the ef pairs ¥ x ([1,¢e] N Z) by

(T?l)7(T7l+]‘)7"'7(T7€)7(foT’1)7"'7(fOT7e)7"'3(f71OT’1)7(f71OT36)3(T’]‘)""7(1—7Z71)

if I >1 and
(1,1),...,(f,e),(Fot,1),...,(Fot,e).oo, (F Lot 1),...,(F Lot,e)
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if [ = 1. Since £ does not lie in CE&%% there exists a pair of 7 in 3 and 1 < t < e such that the

following hold:

deg(£/9)-(t +1) + deg(§/5)-(t) = p/e
ift<e—1,or

deg(£/5)- (1) + pdeg(§/5)5-10-(e) = p/e

if t = e. We may choose the pair to be ‘minimum’ (i.e. ‘left-most’ in the arrangement above) amongst
those satisfying the condition. By the ‘minimality’,

deg(§/9)+(t) + pdeg(£/9)-(t —1) <p/e

ifl<t<e—1,
deg(§/9)+(1) + pdeg(£/5)-10-(e) < p/e
ift=1, or
deg(§/9)j-10r(€) + pdeg(§/S)s-10-(e — 1) < p/e

if ¢ = e, holds as otherwise deg(¢/S)+(I) + pdeg(¢/S)+(I — 1) < p/e if I > 1, or deg(&/5)+(1) +
pdeg(£/S)ij-101(e) < p/e holds. In any case, the assumptions of the preceding lemma are satisfied,
and ¢ would not lie in C?;’R'a. O

Theorem 55 An overconvergent Hilbert modular form, which is an eigenform for K, with non-zero

eigenvalue for all p in Sp, extends to C’IP;II{V’VR_a

Proof. Let £ is a point over S of OIP(II)‘V’VR_E, and suppose that it corresponds to (A, C) over S. Fix a
place p above p. It suffices to establish that, for a Raynaud submodule scheme D of A[p] distinct from
C, (A/D,(C + D)/D) lies in CEII)‘V:,R_?” and deg((A/D, (C + D)/D) < deg(A,C). As ¢ defines a point of

CIF;FI{V’VF;BL, it follows from the preceding proposition that, if ¢ denotes the point corresponding to (A, D),

o PR,R-a PR,R-a
¢ lies in either Cpryo " or D2 ™.

If ¢ lay in C?f;f;a, it follows from Proposition 52 that deg(¢/S)-(¢t) = deg(¢/S)-(t) for every T

and 1 <t < e and C would equal D, which is a contradiction. Hence ( lies in D?I{V’VI?;, as ( lies in

IOy = opbRea gy piibRea o C’?;”V’VR;a U D?ID‘V’VR; . Granted, it follows from Proposition 52
that if ¢t > 2, deg(£/9).(t) = p(1/e — deg((/S),(t — 1)), and deg((A/D,(C + D)/D)/S).(t —1) =
deg(&£/9)-(t)/p, while if t = 1, deg(£/S)for (1) = p(1/e — deg((/S)-(e)), and therefore deg((A/D, (C +
D)/D)/S)-(e) = deg(&/S)for(1)/p. It is immediate to see that (A/D,(C + D)/D) lies in C’;}iﬁ;a and
deg((A/D,(C + D)/D)/S) = deg(&/S)/p < deg(&/S) as desired. O

Remark. The proof of the theorem indeed proves that U,, for every p above p, acts completely
continuously on the space of overconvergent p-adic Hilbert modular eigenforms in our sense.

6.3 Throwing away loci of ‘large’ co-dimension

In this section, in preparation of proving strong analytic continuation theorems on the Raynayd generic
fibre X;?V;R_a, we define various admissible open subsets X;QIW of ‘co-dimension < 1’ (which contains
the multiplicative ordinary locus), based on the observation in Proposition 32. It is an analogue of those
defined in Section 5.2 in [31].

Let Ok denote the ring of integers of a finite extension K of L and k be its residue field. Let
S = Spec Ok and S = Speck.

The (standard) Barsotti-Tate p-divisible group of A over S defining an S-point of YE® is a product
of filtered principally polarisable Barsotti-Tate p-divisible groups X, (of dimension e, f, and of height
2ep fy) over S where p ranges over Sp; for each p, one can define invariants as in Section 5 for X, over
S according to which one can stratify moduli spaces of Barsotti-Tate p-divisible groups. To that end,
let ¥ = ¥go (resp. ¥ = Xgryz) be a tuple (£,), where p ranges over Sp with each ¥, defined as in

Section 5; and we shall let ?IP(I,{E (resp. ?IP(FI{WS) denote the closed k-subscheme of the special fibre ?IP(R

(resp. YE(II{W) defined by demanding that the corresponding principally polarisable filtered Barsotti-Tate
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p-divisible group X = X, lies in the closed substack of SBT (resp. SPT) defined by ¥, as in Section 5
for every p in Sp.

Let ?ZR’—H_ denote the union (over X) of subscheme ?IP(P; of ?;R where ¥ = Ygo is defined such

that, there exists p in Sp such that

)

[FP:QP]_QZZC_WEO,T

where 7 ranges over f]p, holds. It follows from Proposition 32 and Proposition 29 respectively that every

—PR . . . . —PR
such Y y, is of co-dimension > 2 in Y .

Let PR,+ PR PR,++
Yk =Yg —Yg

and let PR+ PR A
PR, —1,~xFPR,
Yiw =7 Y )

As it is useful in defining ‘compactifications’ of the admissible open sets above, if ¥ = Yry, and if,
for every p in Sp, one of the following:

o (St-1): vrzr ={1,...,ep} while yrz , = @ for every 7 in f]p,
o (St-2): vrz, = @ while YRz, = {1,...,ep} for every 7 in 3,

holds, we say that ¥ is semi-stable.
If ¥ is semi-stable, let Sp 5 denote the set of all p in Sp such that ¥, satisfies (St-1). If ¥ is semi-

PR L1 —PR . —PR —PR
stable, let X 1, 5, denote the Zariski closure of Y oy, 5 in X geqy,. Let Z gy, 57 denote the complement

. —PR . —PR .
in X 1, 5 of the union of Yy, s+ as ¥ ranges over all ¥* = (vrz 7 1, Yrz,7,+ ) Which are not equal
to ¥ such that vrz , 4+ contains vrz . and YRz -+ contains yrz . simultaneously.

Definition. Let XIP(I;”V’VJF denote the union of sp’l(?iﬁ{v’j) and spfl(fi?wyz) for all semi-stable X. If

we let Xy " denote X ot — Vo' and Y?I{V’:r denote 71 (X e, it follows by definition that

PR,+ _1,~PR,+
Xkt =SP 1(XKIW )-

6.4 Overconvergent eigenforms of weight one

We shall use the notation used in Section 3.

Theorem 56 Suppose p > 3 and let L be a finite extension of Q, with ring O of integers and mazimal
tdeal . Let -
p: Gal(F/F) — GL(0)

be a continuous representation such that
e p is totally odd,
e p is ramified at only finitely many primes of F,

e 0= (p mod \) is of the form as supposed in Section 2, and there exists a non-Fisenstein maximal
ideal m of T'Y(K) such that p ~ Py,

e 7 is absolutely irreducible when restricted to Gal(F/F((,)),

if p = 5 and the projective image of p is isomorphic to PGLy(F5), the kernel of the projective
representation of p does not fix F((s),

P is trivial at every finite place of F' above p,
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e p is unramified at every place p of F' above p, and p(Froby), where Froby, is the arithmetic Frobenius,
is equivalent to (ap ¥ )
0 ﬂp ’

Let Sp. (‘e’ for ‘equal’) denote the subset of all primes p of F' above p such that o, = By, and let
Sp.a (‘d’ for ‘distinct’) for denote the subset all primes p of F' above p such that oy, and B, are distinct;
Sp is the disjoint union of Sp. and Sp 4.

Then there exists a family of overconvergent cuspidal Hilbert modular forms Fs; of parallel weight one
and of level KIw where ¥ = ¥q X X, where ¥4 C Spq and X C Sp such that

UpFs, = By Fxy for every p in X4,

UpFs, = o Iy for every p in Spq — X4,
UpFs = aplFs + Fs_(py for every p in X,
UpyFy, = apFxy for every p in Sp e — X,
UqFs =0 for every Q in T — Sp,
TqFs = trp(Frobq) Fx for every Q not in T,

where o, and B, denote, by slight abuse of notation, the roots of characteristic polynomial of p(Froby)
and where T denotes the (disjoint) union of Sp, Swr, S, and Sa, and such that its associated Galois
representation is isomorphic to p.

Proof. Corollary 20 gives rise to a cuspidal p-adic Hilbert modular eigenform Fy such that
o ToFy; = tr p(Frobq)Fy, for every Q not T

o Uply = apFy if p lies in Sp g — X4, while Uy Fy, = B, Fy if p lies in 3g;

o UyFy =apFx + Fy_() if p lies in 3 while U, Fx, = ap Fy; if p lies in Sp ¢ — Y.

Furthermore, Lemmas 1.6-1.8 in [61] prove that we may increase the level K at Q if necessary to assume
that Fx maps Uqg to O for every Q in T — Sp.

The proof that Fx, defines overconvergent modular eigenforms is analogous to Lemma 1 in [11], with
a characteristic zero lifting of a sufficiently large power of the Hasse invariant of parallel weight p — 1 on
XER[1/p] in place of the Eisenstein series E of weight p — 1 in the proof. It is necessary to establish that
the Hecke operator at every place of F' above p, acts completely continuously on the space of overcon-
vergent eigenforms (in our sense), but this has been proved already; see Remark at the end of preceding
section. [J

In [50], this theorem is extended to the case where not only no assumption is made on p, but p is
allowed to be reducible when restricted to Gal(F'/F((,)) (if it is not induced from a imaginary quadratic
field in F'(¢p) in which every prime of F' above p splits completely).

6.5 Overconvergent eigenforms of weight one, in companion, are classical

We shall prove that those overconvergent eigenmforms of weight one constructed in the theorem imme-
diately above are indeed classical, which is the last step of proving the main theorem of this paper. We
firstly prove a result (Proposition 57) of paramount importance, which describes the degrees of a point
in le(lf‘vfr. Indeed, it is to obtain a result of this kind that we study mod p/p-adic geometry of XER
carefully.

The construction of a weight one form on Xf;?vj' and ‘by extension’ over to XIF;?V’VR_a is achieved
by induction, designed on the observation made in Proposition 57. Proposition 59 is an analogue of
Proposition 5.7 in [31]. However, as in [31], in order to extend the eigenform to the vertex of the
valuation hypercube (the [F}, : Q,] copies of the interval [0, 1] for every p) at the ‘furthest end’, it is also
necessary to glue its companion forms to it by g-expansion calculations (Lemma 63). We also establish
an analogue, Proposition 60, of Lemma 5.9 in [31].
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Proposition 57 Let £ be a non-cuspidal S-point of X?I{V;Jr and let ¢ denote its image by the forgetful

morphism. Suppose that yeo.-(C), as T ranges over Xy for every p, are not simultaneously empty. Then,

for every p, there exist T in 3 = X, and an integer 1 <1 < e = ey, such that if we arrange the deg(£/S),(t)
as

e 7deg(g/s)fflo‘r(e)’deg(&/S)T(l)’ s 7deg(§/S)T(e)a deg(f/s)for(l)a Tty

i.e. a sequence of f = f, blocks of cardinality e, ordered by i, with each block, in itself, being ordered
by the index 1 < t < e, the sequence starting with deg(&/S)+(l) takes values 1/e,--- ,1/e, in [0,1/e),
0,...,0.

Fiz 7 in'S and 1 < t < e such that deg(£/S),(t) lies in [0,1/e) above. In which case, deg(€/S),(t)
is indeed 0, i.e. deg(£/S),(t) is the first 0 immediately after 1/e, if and only if t — 1 & vrz.-(§/9)
and t ¢ Yrz-(E/S) hold. On the other hand, deg(£/S)-(t) lies in (0,1/e) if and only if t lies in
YRz, (§/S) N Rz, (£/5).

Proof. In this proof, we shall omit our reference to ¢ and ¢ for the invariants defined in Section 5.
We also fix p, and omit our reference where possible.

By assumption, if [F, : Qp] = Y e — |y80,-|, then vgo » = @ hold for every 7, but this is excluded.
Hence it follows that there exists | in 3 such that,

e for every 7 in 3, distinct from T, YEO,» = O
e for f, yeo,+ = {l} for some 1 <[ <e.
We then make appeal to Proposition 35 and Proposition 36: if ¢ lies in ygo -, then

e t > 2 and either the case t — 1 € vy, while t € yrz -, or the case t — 1 & vrz , while t & Yz -
holds.

e ¢ =1 and either the case e € Vrz j-1,, while 1 € yrz -, or the case e € vRy j-1,, While 1 € YRz -
holds,

while ¢ does not lie in ygo,, if

e ¢t > 2 and either the case t — 1 € vy, while t € yrz -, or the case t — 1 & vrz , while t € Yz,
holds.

e ¢ =1 and either the case € € Vrz j-1,, while 1 € yrz -, or the case e € vRy j-1,, while 1 € Yrz -
holds,

and ascertain the tuples {vrz -, Vrz -} for all 7 in .0

Proposition 58 Let £ be a non-cuspidal S-point of XIP;PI{‘;JR'?‘. Suppose that deg(£/S)(t) is of the form
in the preceding proposition, except we demand further that, for every p, deg(£/S) is not an integer
multiple of 1/e,, or equivalently, if t lies in yrz - (£/S)Nvrz, - (€/S), it is assumed that deg(£/S)-(t) lies
in (0,1/e). Then & lies in XIP(IID”V’VJF.

Proof. 1t suffices to establish | > vgo,-(§)| = 1 as T ranges over f]p, for every place p of F' above p.
Fix p and we shall omit the reference. By assumption, there is no 1 < ¢ < e such that ¢ — 1 not lying in
vrz,.(£/S) and t not lying in yrz, (£/5). The assertion therefore follows from Proposition 35 and 36. O

Fix a proper subset I' of Sp. Fix, furthermore, a prime 3 above p (with a fixed uniformiser ) which
is not in I". When convenient, we shall omit our reference to B (and only for ) from notation.

Definition. For an interval I C [0, f] be an interval, we shall let X\ I denote the union of
sp’1(7l;?w72) for semi-stable X, such that Sp x contains Sp — I', and the set of non-cuspidal points £
over S in Y;gﬁ such that

e forpin I,
0 < deg(§/5)+(t) < 1/ep

for every 7 in flp and 1 <t < eyp;
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e for p not in T'U {P}, deg(&/9),(t) satisfies that
deg(£/5)-(t) + pdeg(§/5)5-10-(t) <p/ep

for every 7 in f]p and 1 <t < ep;

o for p =P, deg(¢/S) lies in 1.

It is an admissible open subset of Xf;%f by Maximum Modulus Principle.

For brevity, let
r=rp=1/p+1/p*+---+1/p/ P <1/(p-1) <1

ife=1.

Proposition 59 Ife =ep > 1 and f = fp > 1, a section over X;’IEI[O, 1/e) which is a Ug-eigenform
with non-zero eigenvalue, extends to X}’Ia [0, f).

Ife=1and f >1 (resp. f=1), a section over X, [0,1) (resp. Xtk [0,p/(p + 1))) which is a
Ug-eigenform with non-zero eigenvalue, extends to X;’II;V[O, f=r) (resp. X;’II‘:V[O, 1)).

Proof. When e = 1, Proposition 57 recovers Lemma 5.3 in [31] and the assertion follows from a
straightforward generalisation of the proof of Proposition 5.7 in [31]. Suppose therefore that e > 1. For
clarity, we break our proof into two steps.

Step 1. Extending a U-eigenform, with non-zero eigenvalue, from XE’IEI [0,1/e) to X;?II:N [0,f —1/e].

Suppose £ is a non-cuspidal point of X;’IEV [0,f —1/e]. Let (A,C) denote the corresponding HBAV
over S together with a Raynaud vector subspace scheme C of A.

Suppose that there exists t in ¥ such that yeo + (€£/5) = {1} for some 1 < I < e. Tt follows from Propos-
ition 57 that deg(£/S)+(I—1) = 0if 1 > 1 or deg(£/S);-10t(e) = 0if I = 1. For brevity, we assume [ > 1. It
then follows from lemma 43 that, if ( denotes the point of XIP;?V’VR_E corresponding to (A, D) for a Raynaud
vector space subscheme D such that D[r] is distinct from Cfx], all deg(¢/S)+(1),deg(¢/S)s(1+1),...
are 1/e except deg(¢/S)+(l — 1) which satisfies 0 < deg(¢/S)+(I — 1) < 1/e. Because of Proposition 57
and the observation that deg((A/D, A[r])/S),(t) = 1/e — deg(¢/S)-(t) for every 7in ¥ and 1 < t < e,
the point corresponding to (4/D, A[x]/D) lies in X" and 0 < deg((A/D, A[x]/D)/S) < 1/e.

Step 2. Extending a U-eigenform, with non-zero eigenvalue, from X;’II‘:V [0,f—1/€] to X;QII‘:V [0, ).

Let € be a point of Xt [0, f) — X/ [0, f — 1/€]. As in Step 1, let (A, C) denote the corresponding
HBAV over S = Spec Ok (where O is the ring of integers of a finite extension K of L) together
with a Raynaud vector subspace scheme C of A, and suppose that yro (£/S) = {I} for some f in )y
and 1 <! < e. By assumption, deg(§/5):(l),deg(&/S)+(I +1),..., are all 1/e except the last in the
arrangement for which 0 < deg(¢§/S)+(1—1) <1/eif I > 1, or 0 < deg(§/S)j-101(e) < 1/eif I =1, holds.
For brevity, suppose [ > 1.

We use the set of notation introduced in Section 5.5. Let D be a Raynaud vector space subscheme
which is distinct from C in A[n] and let ¢ denote the point corresponding to (A, D) as in Step 1. It
follows from Lemma 44 that p. = 0 except when 7 is  and ¢ is [ — 1. It is enough to establish that
x?’Fl > 0 as it then follows from Proposition 57 that all deg(¢/S)+(1),deg(¢/S)+(I +1),... are 1/e,
except 0 < deg((/S)+(l — 1) < 1/e, and the assertion of Step 2 follows as concluded in Step 1.

Suppose that deg({/S)+(I—1) = XTD’I_l = 0. In which case, pf’l_l = ex /e by Lemma 39. It therefore

1 . _ - _
follows from ST , With e 1U§_l =0 in R that sﬁmxlf "~ 0in O'k. On the other hand, Corollary 46,
combined with Proposition 57, establishes, in particular, that XTD’Z = ex/e (we know le = ek /e and

XTD’Z > 0 but it takes the knowledge of X?’ZH = ex /e and Proposition 57 to conclude this claim). Since

ex/e— XTD’I is computed (see the formula for XTD’Z) by the valuation of SJlreiL in R (because X% =ex/e),
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it follows that the valuation of EZT (and of Sé) is zero. Combined with the claim earlier, this would imply
that Xfr_l = ek /e which contradicts the assumption that Xfr_l =exdeg(£/5);(1—1) <ex/e. O

Proposition 60 Let £ be a point of X?ﬁ;f which corresponds to (A, C) defined over S = Spec R for the
ring R of integers of a finite extension of L. Fix a prime P above p with a uniformiser w. Suppose that
(1) if ey > 1 and fig > 1, there exists T in ¥ = Sy and 1 < t < e such that deg(€/S),(t) = 1/e for
every T in ¥ and 1 <t < e except for 7 =1 and t = 1 — 1 at which 0 < deg(£/5):(1 —1) < 1/e
holds;

(I1) if e =1 and f > 1, there exists t in 3= 2:;3 such that deg(£/S)r = 1 for every T in S distinct
from §71 ot while deg(§/S);-10t lies in the open interval (f —1,f —r)
(IIT) ife=1 and f =1, deg(&/S) lies in (0,1)

Then, for any Raynaud submodule scheme D of A[r] over S that is distinct from C in A[r], (A,D)/S
defines a S-point olelz%;“ such that deg(¢/S) lying in (f —1/e, f), (resp. (f =1, f—r), resp. (0,1))
if (I) (resp. (II), resp. (III)) holds.

Proof. The case (III) is proved in [49] while the case (II) is dealt with in [31]. The case (I) follows
from the preceding proposition . [

Remark. This is a generalisation of Kassaei’s ‘saturation’ (see Lemma 5.9 in [31]).

Definition. Let Z}*}IW be the admissible open subset of points £ over S in XIP(II{V’f such that, for every
p, deg(§/S) lies in (fy, — 1/eyp, fp) (xesp. (fy — 1, fp —7p), resp. (0,1)) when (I) (resp. (II), resp. (III))
of Proposition 60 holds.
Lemma 61 For every representative £, if f > 1 (resp. f = 1), the pull-back X}’II‘:V,Z[O, ia) ofXIt’IEZ[O, f)—
X}l?lﬁ/R—a (resp. the pull-back X;’ISV7Z[O, 1) of X;;’IEV [0,1) — Xllzl;v’VR_a) along X?;”V’nya — XII?I{V’VR_a is con-

nected.

Proof. This can be proved as in Lemma 6.3 in [31]. We sketch our proof for the case f > 1. Firstly,
we show X?;’Ia’z[o, f—14(e—1)/e] is connected.
The connectedness of X?}’IE,)E[O, f—1+(e—1)/e]: In the special fibre X k1y.¢, the irreducible compon-

ents are parameterised as YE where ¥ = ¥rz = (Yrz,r VRz,7) (see Section 5.4) satisfies the conditions
that hold for every p: every 1 < ¢ < e, lies either yrz » or vrz,~, but it does not lie simultaneously in
Yrz,r and vryz ; for every 7 in f)p.

To attain some clarity in our exposition, we may and will henceforth suppose that |Sp| = 1, and we
omit our reference to 8 when convenient.

For 0 < N < d — 1 which is of the form N =e(y — 1)+t forsome 1 <y < fand 0 <t <e—1,let
Y n denote Mgz n defined by

® YRZ,f = ' = VRZ,j-(x+Dot = D

® VYRZj-xot = {e—=(t—1),...,e—1,e} (in particular, |’yRZ’f7XoT| =1t),
® VYRZ,j-(x—Dot = = VTRZ,f-lot — {1,...e}

e vpz-=1{1,...,e} — Rz, for every 7 in .

For example, when N = d—1 in which case x = f and t = e—1, then ygy -1t = {e} while yrz , = @
for every 7 in 3 distinct from f=1o 1. AAt the other end of the spectrum, if N =0 (xy = 1 and ¢ = 0),
then vYrz - = {1,..., e} for every 7 in X.
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When N =0, let Xy, denote X - (XZ nx ) where ¥ = ¥Ry is defined by yrz,- = {1,...¢e} for
every T in 2 and where %2 differes from % by the corresponding 71?2,7 = @ for every 7 in 33, For N > 1,
let YZN denote the union of YE" as J ranges over 0 < J < N — 1.

Let Y;N denote X5, N Y;}I{V’:r. As X;’IEV7Z[O, f—1+(e—1)/e] = sp‘l(Y;dﬂ), it suffices to prove
that Y;N is connected when N = d — 1. We prove the connectedness by induction. One checks firstly
that Y;N is connected when N = 0 by the density and the connectedness of the multiplicative ordinary
locus of YI;?W. Secondly, we assume the connectedness of Y;N_ , to prove the connectedness of Y;N.
Let £ be a point of Y;N - Y;N—l' Write X for $rz(€), which is Xrz v as above.

Let ¥ be exactly the same as ¥ except at f7X o { at which we demand YRZ,j-xof = {e—t,...,e} =

__y+
YRZ,j-xot U {e —t}. One observes that ¥ is nothing other than YRz, N—1, and XE is a member of

- =
the union Xy, _,. We then conclude our argument by showing, if X is an irreducible component of X

_ _ — —n+t
passing through &, that X N X;rﬂw)@ is connected and (X N X;le) nx" # 3.

The connectedness of X;?II‘;I[O, f): It suffices to prove the connectedness of X;;"IEM[O, f—=1+(e—
14 7)/e] for some v € (0,1) N Q. Suppose that X;’IEV)Z[O,f — 14 (e =14 +)/e] is not connected.
Then there exists a connected component X of X Itll;v [0, f —1+ (e —1+4+)/e] which does not intersect
X;’IQ’Z[O, f—14(e—1)/e]. By the quasi-compactness of X, there exists v < 7/e such that X?;’IQ’E[O, f-
l+(e—14+v)/efNX =@.

Let £ be a point of X. In which case, v(§) = f — 1+ (e — 1)/e + v(£)j-10(€), where v();-104(e)
denotes the valuation of yﬁ_loT(f) as defined in Section 6.1, while it follows from the definition of v that
v(€) > f—14 (e —1)/e+v. Combining, one deduces that v(&);-1.¢(e) > v. In fact, for any point ¢ in
X Nsp~*(€), the strict inequality v({)j-10t(e) > v holds.

On the other hand, the admissible open subset sp~1(£)[0, f — 14 (e — 1 ++)/e] of points ¢ in sp~1(£),
such that 0 < deg(¢) < f —1+4 (e —1+)/e holds, is evidently connected and is contained in X. As for

any point ¢ in sp~1(€)[0, f — 1+ (e — 1 +7)/e], deg(¢) is given by f — 1+ (e — 1)/e + v(()j-101(€), one
may therefore deduce v({)-10t(e) < 7y/e holds. This is a contradiction. O]

Suppose that the level K of overconvergent modular forms is K as in Theorem 56. In particular, let
T denote the disjoint union of Sp, Sy, SL, SA.

Proposition 62 Fir a subset T of Sp such that |T'| < |Sp| — 1. Suppose that Sp is a disjoint union of
two subsets Sp o and Spq. Let T'e (resp. T'q) denote I' N Spe (resp. T'NSpa).

For every ¥ = £q x e C Sp —I' = (Sp,a — Ta) X (Sp,e — I'e), suppose that Fx is a section over
X;(’Iz,[o,f —r)if f=fp>1and X;?ISV[& 1) if f =1 satisfying

UpFL = ap, FY for every p in (Sp.a — Ta) — 2,
Uy FLE = By FL for every p in 24,

UpFL = a, FL for every p in (Spe — Te) — Se
UpFL = ap, FE + F;f{p} for every p in X,
UqFL =0 for every Q in T — Sp,

TQFL = 4QFL for every Q not in T

where a’s and B’s are all assumed non-zero. Then, for P in Sp — T which we fiz, the family {Fs}s of
eigenforms define a family of eigenforms {F;U{‘m}z defined over X;;’II:V[O, f] with ¥ = 34 X X¢ ranging
amongst the subsets of Sp — (I'U {B}) such that, if P is in Sp.g — Tq,

Up Fi "™ = 0, FEP Y for cvery p in (Sp.a — Ta — {B)) — Sa,
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Ungu{p} = 5PF£U{q3} for every p in Xq,
(UpFy " — 0y P = 0 for every p in (Sp.e —Te) — 2
UPFSJ{%} = angu{m} + FFu{q}} for every p in X,
UQFé‘U{‘B} =0 for every Q in T — Sp,
TQF;U{m} =QFL for every Q not in T,
or if B is in Spe — e
U,,F;U{m} = ozngu{m} for every p in (Sp.q — T'q) — Xq,
Ungu{m} = BPFZFU‘W} for every p in Xq,
Ungu{‘m = angu{m} for every p in (Spe —T'e — {B}) — Ze
U, Fru{m} ay FFUW} + FSU{‘IS} for every p in X,
UQFgu{m} =0 for every Q in T — Sp,
TQFQJ{‘B} = 'yQF;U{m} for every Q not in T.
Furthermore, when f > 1 (resp. f=1), if the equality
F5((A,0)) = F((A, D))

holds for any pair of points (A,C) and (A, D) of ¥k, N X}’ISV[O,f) (resp. X, N X;;’II‘:V[(e —1)/e, 1))
satisfying C[p] # DIp] for all p in T, then

Lo (4, 0)) = B (4, D))

holds for any pair of points (A,C) and (A, D) of X}y, N XE’IEI[O, f) satisfying C[p] # DIp] for every p
in T U {PB}.

Proof. We shall prove the case e > 1 and f > 1. The case f = 1 follows similarly. Fix ¥ C
Sp— (TU{PB}).

Suppose firstly that ‘B is in Sp_ 4 —'q. By definition, the sections FY; and qu{fn} are both thought of
as being defined over X 7. "0,f)cXx EISV [0, f] and are eigenforms with the same eigenvalues except at B.
For brevity, let Up FL = oF% and Up FL Surp) = = BFL Sugpy we shall also let Fy, Lo = aFL—BFy, Suppy and

Hy ™ = (P ) -

We shall think of H; ) as a section over X 00,1/e) € X [0, f) (since f > 1 is assumed).
Suppose that B is in Sp o — .. The sections F and FEU{‘B} are eigenforms with the same eigenvalues

FL), both of which are defined over X;’IW [0, f) but are no longer Usp-eigenforms.

for Hecke operators away from Sp and for U, for p in Sp — I'; furthermore, FL is an Usp-eigenform with
eigenvalue a (which we may assume to be 1 but continues to write «) while Fgu ) is a multiplicity 2

r r
generalised Ugp-eigenvector and U‘ﬁFZu{q&’} = O‘qu{q:%} + FL. We let Iy, ViR - FZu{qs’} and Hy, VIR
O[qu{m} + FE

Let w = wyp denote the map of sections defined as above. We shall glue w(ng{sm) defined over

w(X i 10,1/e)) = X7k (f — 1/e, f] and Fgu{m} at the intersection
Nicin (f = 1/e: ) = Xy, [0, /) N X (f = /e, f]

to construct a section over X1 [0, f) U X (f — 1/e, f] = X510, £].
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For the fractional ideal J = £~ for some fixed representative £ , let Tate;(q) = G ®z D~'/q’ denote
the algebrified (rigid analytic) quotient over a [F : Q]-dimensional polydisc over L by the Op-linear
morphism ¢: J = G ®z D~ 1.

The (semi)abelian variety Tate(g) comes naturally equipped with real multiplication and is naturally
J~-polarisable. We suppose that Tate;(q) is equipped with a n-level structure n and (when appropriate)
with choices of isomorphisms:

® Op/p~ (G®z D))

e and Op/p ~ p~'J/J (and let ¢° ' denote a lifting in ¢° ' of the generator of ¢ 7/7 defined by
this isomorphism)

for every p above p, and these define cusps of X, and X%, 1, -
For an overconvergent cuspidal modular form F' of weight A = (1,w) and of level KIw, let F; denote
the restriction of F' over Xf;%i;fa andlet ), g, € 7 (v, F)g” denote the g-expansion obtained by evaluating

F (or Fy) at Tate;(q). By slight abuse of notation, by
(G @z D[Pl/q” < (G @z Dpl/q’

we shall also mean the ‘full’ multiplicative Raynaud vector subspace of Tate;(q) (as only the B-part is
relevant to the calculations that follow). Then, fixing J = ¢! as above,

(UpF)(Tates(q), G @z D' [R]/p?) = Y ey (rv, F)g”

veJy

where r is a totally positive element satisfying PBJ ! = rqul with qul = (g a member of the fixed
representative for the class of the fractional ideal B.J 1.

More generally, for any non-zero integer A, let Jyz» denote a member of the fixed set of representatives
satisfying PrJ 1 = raJypx for some totally positive element ry = T;‘i;» We often write r for rq.

Lemma 63 Over X;th (f —1/e, f) if e > 1, over Xjh (f = 1,f —r) ife = 1 and f > 1 and over
X;isv(fflaf*T) ife=1and f =1,

F;U{‘ﬁ} _ w(ng{‘ﬁ})

Proof. Firstly we prove the case when P is in Sp g — I'q. As in Proposition 6.9, [31], it suffices to

prove the equality

FFU{‘;}}

* k% ru{y}
T pFs =7 Ty pHy

of sections over the admissible open subset m; 5 (X;7,[0, ) in the generic fibre XER, 1, where 7 is
the map of invertible sheaves 73 3.9\ R-a — 7] 3P R-a Where A = (1,1).

We may and will normalise Fourier g-expansions to assume acy (v, ;) = ¢y, (rv, Fy) and Beg (v, FEFU{%}) =

cry (v, Fgu{m})7 for r in F such that BJ ! = Tqul, hold for all v in J;. On one hand,

7P P (G @2 D7 /g? G 0z DB/ 6P )
= (aFy — B ) (G @z D7 /q7)
ZueLu (acy (v, Fy) = Beg (v, Fyy, m}))q
ZyeJ+ (chz (7”1/, FXI;) - CJqs (TV, FEu{m}))qy'

v

On the other hand,

mms g Hy (G 02 D7 /¢! .G 0z DB/’ qP )
= —(Fgu{mr} ~ FL) (G ®z D7V /¢¥ )
= (FY — Fyyp)(G@z D71 /q7%)
= Zug,].,_ (CJfJ,} (rv, Fg) — Ciyp (rv, Fgu{m}))q

174
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We shall prove the case when B is in Sp o —I'c. We may normalise the Fourier g-expansion to assume,
for every v in J., that acy (v, FL) = ¢y, (rv, F) holds.
Since
Ugp (Fouqpy — ¢F%) = aFsy gy + Fyy — caFy, = a(Fyy gy — cFy) + Fy,

for a constant ¢, one may subtract a constant multiple of FEF’J from Fgu (B1 if necessary to assume, for
every J that

cs (1, Fygpy,g) =0

from now onwards. Since Fgu ) is an eigenform for all Hecke operator T for Q not in 7', we may
therefore further assume that

¢y (v, Fygpy,g) =0

for every J and v in .J, such that vJ~! is coprime to the primes of T, or indeed to p by making the
tame level K sufficiently smaller, if necessary.

Sublemma 1. For A > 1, ¢y, (rav, FEFUW}) = Xa* ey (v, FE) for vJ =1 coprime to p.

Proof. Evaluating U‘ﬁFgu{m} = O‘Fgu{m} + FL at (Tate;(q), G ®z D~1)[B]/q”), we have
S o (0, Flog)d” = 3 acs(v, Fup)a” + 3 (v, FE)g”
veJy vedJy veJy

ie.,
Cy (rv, Fgu{fn}) = acy(v, Fgu{m}) + ¢z (v, FL).

Similarly, since Uy Fyy iy = 0 Fyy iy + A, evaluating at (Tates(q), G @z D™")[B]/q”7), we
have

Z chA(TAV,FEFU{m})q” = Z ey (v, Fgu{;p})q”—i—)\a’\_l Z cy(v, F5)q",

veJy veJy veJy

which proves the assertion, as c¢;(v, Fgu{q:%}) =0.0
As « is a unit, we may and will explicitly assume o = 1.
Sublemma 2. For A>1, ¢;,_, (rav, Fgu{qs}) = ey (v, FL) for vin J,.
Proof. Clear. [0

We now prove the assertion of the lemma, by comparing g-expansions at (Tates(q), G®z D~[B]/q”).
On one hand,

Fp"™ (G @z D7 /g’ G @7 D [F]/07)
= Lies, 1 Fyypqy)d”.

Jom
In particular, the coefficient of r,* * v-power of ¢, where v lies in Jy, is

Jor—
CJ(TA% g v, Fgu{q}}) = AC.]m,A (Va Fg)

by the lemma.
On the other hand,

w(HSPH G ©z D1/¢’ .G ®z D[] /q7) .
= ZV€J+ CJ;B—l ((T L )_11/’ Fgu{fp})qu =+ Zyej+ CJ(B_l ((T L )_1V7 Fg)qu

59



J _
Because r/s-1 = =r * /rA * by definition, the coefficient of the r)\ * v-power of ¢, where v lies in
Ji, is

Tgn , J
chp—l ((7&)\& A/r/\

T Ty
¢, IR Fgu{m})"'_cl L(rF v FL)
(N Dery  (n, FE) s (0 L)
= Acs_, (v, FL)

“av_1 Jp-a Jon— Jor— A Jor— 2
2O VFEFU{m})—i—ch ((r )\n )Ty Fy)

p—A

by the sub-lemma. The coefficients of the ryv-power of ¢ for all A > 1 on both sides coincide, and
therefore the lemma follows. O

It remains to establish the last assertion of Proposition 62. Suppose that (A, C) is a point of Z}IW N
X500, f], and D is a Raynaud submodule scheme of A[p] such that C[p] # D[p] for every prime p in
I'U {PB}. By the assumptions, it is only necessary to deal with the case at 8. To this end, let G be
a Raynaud submodule scheme of A[] distinct from C[B] and D[P]. In which case, (A,C,G) (resp.
(A, D, @)) defines a point Wi%(X;?Ia[O, f)) lying above (A, C) (resp. (A, D)) along my g respectively. It
then follows from the identity of sheaves over ;. %(Xfﬂz, [0, f)), established in Lemma 63 that

FLo((4,0) = mp o iR ((4,0,6)) = B ((A/G ARB)/G)) = wy (Hy ") (A, 6)).

On the other hand, one can similarly deduce the equality FFU{(B}((A, D)) = wm(ng{m})((A, G)), we
then deduce FZFU{‘*‘}((A, C)) = FL"™¥ (4, p)). O

Corollary 64 F;U{m} extends to a section over X;’ISV [0, f1.

Proof of the main theorem. By Theorem 56, we have a family of overconvergent eigenforms {Fy},
one for every ¥ C Sp. Inductively apply Proposition 62 on I to construct a section F'T = Fy over X Eﬁ{v’f
which is an eigenform for all Hecke operators corresponding to the ideals not in T'. Indeed, F'™ descends
to the level K and write F'~ for 7, FT where 7 is the forgetful morphism 7 : XIF;?WJF XIP;R’JF which is
finite flat of degree 1 —|—va fo Hence m*F~ = m*m, Ft = (pzv Fo 4 1)F*. Since F'~ is a section over
XER’+, it follows from the Riemann extension theorem (Proposition 2.10 in [31] for example) that it
extends to a section over X[F;R’R_a. It then follows that the equality (pEP fo 4 1)FT = 7*F~ of sections
over X?;{ R4 olds. To see this, it suffices to observe that the equality (pzv Fo 4 1)F* = 7*F~ holds at
the admissible open subset YT KIw- This, in turn, follows from the last assertion in Proposition 62 that,

if (A,C)/S is a (non-cuspidal) S-point of the set, the equality

(m*F7)((A,0)/S) = F~(A/S) = (m, F+)(A/S) = ZF+ ((A,D)/S) = (p>+ T +1)FT((4,0C)/8)

holds, where the sum ranges over all Raynaud submodule schemes D C A[p] such that (4, D)/S is in
the pre-image by 7 of (A, C). Hence F'* is a section over X;%VR_R which is a classical cuspidal Hilbert
modular eigenform of weight 1 of level old at p. O

6.6 Modularity of Artin representations and the strong Atrin conjecture
Proposition 65 Let F' be a totally real field. Let
p: Gal(F/F) — GLy(F5)

be a continuous representation of the absolute Galois group Gal(F/F) of F satisfying the following
conditions.

e p is totally odd.

e The projective image of p is As.
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Then there exists a finite soluble totally real field extension K of F' such that p, when restricted to
Gal(F/K), is of the form in Section 2.1. In particular, the restriction is modular.

Proof. This can be proved as in Section 2 in [49]. Indeed, as the projective image of p is As, one
firstly replaces F' by its finite soluble totally real extension to assume that p takes values in GLo(F5)
with mod 5 cyclotomic determinant. We may and will choose a finite soluble totally real field extension
K C F of F such that the restriction of p to Gal(F/K) is unramified at every place of K above 3.
We then find an elliptic curve E over K whose 5-torsion representation of Gal(F/K) is isomorphic to
the restriction of p to Gal(F/K), whose 3-torsion representation of Gal(F/K) is absolutely irreducible
when restricted to K (y/—3), and whose 3-adic Tate module representation T3 F of Gal(F/K) is ordinary
at every place of K above 3. We use the degree 24 cover of the p'Gal(f / K)—twisted ‘modular curve’ of
X5 over K constructed by Shepherd-Barron-Taylor in Section 1 of [52], and make appeal to Ekedahl’s
Hilbert irreducibility theorem (Theorem 1.3 in [19]) to find a K-point of the twisted curve.

By the Langlands-Tunnell theorem and a result of Kisin [37] (the weight two specialisation of the
Hida family passing though the weight one cusp eigenform corresponding to E[3] renders T5E strongly
residually modular in the sense of [37]), one deduces T5F is modular, hence E and, by extension the
restriction of p to Gal(F/K), is modular. Finally, apply the main theorem of [2]. O

As a corollary,

Corollary 66 The strong Artin conjecture for two-dimensional, totally odd, continuous representations
p: Gal(F'/F) = GL2(C) of the absolute Galois group Gal(F/F) of a totally real field F holds.

Proof. This follows from Proposition 62 and the preceding proposition. [J
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