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1 Introduction
Let p be a rational prime. A conjecture of Fontaine-Mazur [38] asserts:

Conjecture 1. Let p : Gal(F/F) — GL,(Q,) be a continuous representation of the absolute Galois
group of a number field F. If p is unramified at all but finicely many places of F and is potentially semi-
stable at every finite place of F above p, then p is ‘geometric’

This specialises to the following conjecture of Fontaine-Mazur:

Conjecture 2. Let p : Gal(F/F) — GL,(Q,) be a continuous representation of the absolute Galois
group of a number field F. If p is unramified at all but finitely many places of F and is potentially unramified
(i.c the image of the inertia subgroup is finite) at every finite place of F above p, then p has finite image.

This paper proves many new cases of Conjecture 2 when n = 2, F is a totally real number
field, and p is assumed to be totally odd (i.e. the image by p of complex conjugation with respect
to every embedding F' — P has determinant —1) and the associated mod p representation p :
Gal(F/F) — GL, (FP) is modular. More precisely, we prove the following: Let L be a finite field
extension of Q, with ring of integers @, maximal ideal A and residue field F = &/A.

Theorem 3. Let p : Gal(F/F) — GLy(&) be a continuous representation of the absolute Galois group
of a totally real field F such that

o pis totally odd,
o the image of the inertia subgroup at every finite place of F above p is finite.

e p = (p mod A) is modular— there exists a cuspidal automorphic representation II of Resp/qGLy
whose associated p-adic Galois representation is isomorphic to p— when p is absolutely irreducible
with insoluble image; and suppose furthermore than Il is ordinary at every place of F above p when
P = 2 and p is unramified (i.e. trivial) at every infinite place of F.

o The semi-simplification of p is not scalar, i.e. not twist-equivalent to the trivial representation.

Then there exists a holomorphic modular eigenform of parallel weight 1 on Resr,gGLy whose associated
p-adic representation of Gal(F / F) is isomorphic to p. In particular, p has finite image.

The finiteness of Galois representations associated to Hilbert modular eigenforms of parallel
weight 1 is a well-known result of Deligne-Serre [33] (F = Q) and Rogawski-Tunnell [74] (general
F).



We hasten to remark that the last/fourth condition follows from the third assumption (the
oddness of p) when p > 2.

A case of the main theorem is established in [76], when p > 5 and p is absolutely irreducible
when restricted to Gal(F/F((,)) (and if p = 5 and the projective image of p is PGLy(F5), it is
furthermore assumed that the kernel of the projective representation of p does not fix F((5)); and,
as a corollary, Artin’s conjecture for totally odd continuous representations Gal(F/F) — GLy(C)
is proved completely.

By assumption, after replacing F by its finite totally real soluble extension if necessary, it is
possible to assume p is p-ordinary (i.e. reducible at every place of F above p), and we prove that
p is pro-modular, i.c., arises from a p-ordinary p-adic modular eigenform. To this end, we directly
compare p-adic families, ‘R’ of p-ordinary Galois representations and ‘7" of p-ordinary modular
forms (whether p is odd or not), without recourse to unitary groups over CM fields (hence our pro-
modularity results do not follow from Thorne’s [90] ‘by functoriality’). In fact, our overall approach
to construct weight one forms is crucially dependent on what we know about all Hecke eigenvalues
(hence g-expansion coefhicients by ‘multiplicity one’) of p-adic eigenforms (especially those gener-
alised cigenvalues at places above p), and we know of no other route than to establish an ‘R = 1"
theorem. The Calegari-Geraghty variant [19] of the Taylor-Wiles argument may well allow us to
circumvent some of the issues arising from the ‘multiplicity one problem’ (by directly comparing
deformations of Galois representations that are potentially unramfied at p and the coherent co-
homology complex of parallel weight one Hilbert modular forms) but this alternative approach is
still contingent upon several outstanding conjectures about the local-global compatibility of auto-
morphic Galois representations.

We establish the aforementioned pro-modularity via finding a co-dimension 1 prime I' of R
containing p, such that the specialisation pr : Gal(F/F) — GLy(F[[n]]) of the universal p-
ordinary deformation over R of p at I is irreducible and is not dihedral (i.e. not induced from a
quadratic extension of F). The irreducible pr, with ‘large image’, over the discrete valuation ring
[F[[m]], instead of p, is then used to pull off an analogue of the Taylor-Wiles argument. In finding a
such prime I', while we allow ourselves to trade F for its finite totally real soluble extensions where
convenient, ascertaining pr is irreducible and non-dihedral requires us to tread carefully.

Suppose that p is irreducible with soluble image and is induced from a quadratic extension E of
F. On one hand, assuming that E is not an imaginary quadratic extension of F in which every place
of F above p splits completely, it follows without further expenditure of effort that pr is irreducible
and non-dihedral. This is the approach taken by Skinner [80] (p > 2) and Allen [1] (p = 2),
though the latter works under the furcher assumption in which determinants are fixed as in Khare-
Wintenberger [57]. On the other hand, when p is induced from an imaginary quadratic extension E
of I in which every place of F above p splits completely, it is a priori possible for pr to be induced
from the CM extension. To overcome this problem, we make appeal to the pseudo-representation
theory, due mostly to Bellaiche and Chenevier [10], to observe that if the universal deformation over
R is not dihedral, i.e. not induced from a character of Gal(F/F*) for any quadratic extension F*
of F (resp. is dihedral and induced from a character of Gal(F/E))

dihedral prime over an infinitesimal deformation of p, as a precursor to conjuring up I' as above

, then one can find a non-
(resp. one can instead identify R directly with the quotient of T arising from E-CM forms). This
is a variation of the well-known observation (see work of Ghate, Dimitrov, Wiese and others) that
non-CM p-ordinary families of (Hilbert) modular forms almost never intersect with CM p-ordinary
families (even at weight one).

The question about whether it is possible at all to find I' with irreducible pr is prevalent when p



is reducible. In this case, it is not unreasonable to expect that the ‘reducible quotient” Ra of the p-
ordinary deformation ring R, where corresponding representations are (globally) reducible, define
irreducible components of R. In fact, we do not know a priori that R is equi-dimensional! These
make our search for an “rreducible’ prime T’ (which should inevitably licin R— RA) more difficult.
For example, when F' = @, the reducible (‘Eisenstein’) locus does define irreducible components
of the dimension equal to that of the irreducible (‘cuspidal’) components.

Skinner & Wiles were the first to tackle this issue in [81], and their work has been vastly gen-
cralised by Thorne [90] and his collaborators [3] in arbitrary dimension. To elaborate, lec 1 4 5
be the Z,-rank of the p-adic closure in (Op ®z Z,)* of the group ﬁ;Hr of totally positive units
in the ring OF of integers of F. The Leopoldt conjecture asserts that v should be 0. Assuming
that p is reducible with its semi-simplification of the form 1 @ Y say, we know, on one one hand,
R has dimension bounded above by rp = 14 2(1 + ) + dimpExt! (1,%), while, on the other
hand, the dimension of R is bounded below by sz = 1 + [F : Q] + 7 in terms dimensions of
local versal deformation rings at ramified places. It is reasonable to expect 7p < sp, but there is
nothing conclusive to suggest that the inequality would always have to be strict! This is mostly
to do with the fact that it is hard to get one’s hands on dimgExt!(1,%). To circumvent the is-
sue, Skinner-Wiles [81] instead makes appeal to Washington’s result [95] (resp. Waldschmidt’s [93])
about f-adic Iwasawa invariants (for £ not equal to p) to bound dimpExt!(1,%) (resp. 1 + ),
and manages to find a finite soluble totally real extension F' of F of a sufhiciently large £-power
degree for which the strict inequality rp < sp holds’. This ‘relative smallness’ of R} with respect
to R’ consequently allows [81] to find a prime I' in R’ not lying in R}, i.c. an irreducible I'. The
drawback of this argument, however, is that Washington’s result requires I’ to be abelian over Q
and this significantly qualifies the pro-modularity theorem of [81]. L. Pan [68] follows the strategy
of Skinner-Wiles, and has similar, but more general, results about modularity of p-adic representa-
tions Gal(F/F) — GL(Q,) which are potentially semi-stable at p, but for an abelian extension
F over Q in which p splits completely.

In this paper, we remove this ‘abelian condition’ entirely. The gist of our argument is that,
instead of trying to achieve rp < sp, we prove pro-modularity separately over Spec Ra and each
affine open covering of the complement Spec R — Spec Ra; for the former, a theory of Eisenstein
series achieves this, while for the latter, the irreducibility of T" comes for free (!) even though p
is reducible, and an argument similar to the one in the generic case attains pro-modularity. To
make this part of the argument work, we make essential use of the pseudo-deformation theory
[92] developed by Chenevier [22], Bellaiche-Chenevier [10] and Wake—Wang-Erickson [92]. To es-
tablish that the pull-back of the universal Galois representation over Spec R to any covering of
Spec R — Spec R is indeed irreducible, it is necessary for us to know that it is of ‘Generalised
Matrix Algebra’ type and, for this reason, p (and its restriction to a finite soluble totally real field
extension of F) is assumed to be non-trivial. This can be attained by maintaining p to be totally
odd if p > 2 but not necessarily so when p = 2.

The additional assumption in the third in the case of p = 2 can be removed if one can prove a
result of the form p is modular = p is p-ordinary modular (up to a finite totally real soluble base
change)’ as in [88]. This is a problem of different nature and we hope to come back to it separately
in the future.

ISuccessful distillation of the argument in [81] initiated this paper.



In a forthcoming work, we hope to address the case when p is twist-equivalent to the trivial
representation.
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2  Deformations of Galois reprcsentations

Fix algebraic closures Q and @p once for all. Choose an embedding Q- @P once for all.

Let F be a rotally real field, F be a field of characteristic p > 0, and p : Gal(F/F) — GLy(F)
be a totally odd (i.e. the image of complex conjugation with respect to every embedding of F into
P is non-trivial), continuous representation of the absolute Galois group Gal(F/F) of F.

Let , denote the p-adic cyclotomic character Gal(F/F) — Zy and X, denote its mod p
variant.

Let L denote a finite extension of Q, containing the image of every embedding F' — Q —
@P and let & denote its ring of integers with residue field F. Let A denote a uniformiser we fix
throughout the paper.

For every place v of F, let F, denote the completion of F at v, O, denote the ring of integers
and IF, the residue field at v. Let 71, denote a uniformiser of O Let D, ~ Gal(F,/F,) denote
the decomposition subgroup at v and I, the inertia subgroup at v.

As in [43] (and [23]), we ‘normalise’ the local Langlands correspondence in such a way that if
IT is an irreducible admissible representation of GLy(K) for a finite extension K of Q,, then the
corresponding Weil-Deligne representation is the one associated to 1Y ® | | 7%/2 by Harris-Taylor’s
local Langlands correspondence.

Let @ denote the category whose objects are artinian local @-algebras R for which the struc-
ture map & — R induces an isomorphism on residue fields; and let € denote the full subcategory
of the category whose objects are topological @-algebras which are limits of objects in €. The
morphisms of € and € are continuous homomorphisms of @-algebras which induce isomorph-
isms on the residue fields.

For every place v above p, we identify, via the local Artin map Art,, once for all:

o the pro-p-part 1 + 7, 0F, of ﬁ;

o the image A, of the inertia subgroup at v in the pro-p completion of the maximal abelian
quotient of the decomposition subgroup D, at v.

Let A, = [, A, and let A, denote Iwasawa (group) algebra O[[A,]] (of relative dimension
YE Q)] = [F : Q] over ©). On the other hand, let A(p) denote the pro-p completion
of the Galois group of the maximal extension of F unramified outside a finite set § of places in
F containing the set S, of places of F above p and the set Sy of infinite places of F, and let



A(p) denote the Iwasawa group algebra O[[A(p)]] (of relative dimension 1 + v = kg, (OF @z
Z,)* ] OF , where v denotes the Leopoldt defect for (F, p) which is conjectured to be 0). Let

A= AP®A(P);

it is of dimension 1 + [F : Q] + 5 over 0.

There is a universal one-dimensional deformation
o=[lo:a=]]A =4,
\% \%

of the trivial representation A, — F* and a universal one-dimensional deformation
¢’ : A(p) — AP

of the trivial representation A(p) — F*. We often see via

(6, ¢') — ¢,H¢ '¢'la,)

that A = A,®A(p) also parameterises the pairs (X, X') of one-dimensional deformations of A, —
F* over local noetherian @-algebras with residue field F such that their product factors through
the p-adic completion 05 N A,

A character of I, (or A,) is said to be algebraic of weight r, = (r,) € ZHomay (Fol) G ¢ g
given by [ (7 o Are; ') ™. A pair (x, X') of one-dimensional deformations as above is said to be
algebraic if there exists a pair (k = (k,),¢ = () of [F : Q]-tuple of integers with k, = > _k,7
and ¢, = > {7 and k, > 1 and ¢; > 0 for every 7 in Homyg, (F,, L), such that y, (resp. x/) is
algebraic of weight £, (vesp. £, +k, — 1) for every vin §,.

Give a finite set of places of F as above, Let Fg denote the maximal extension of F unramified
outside 8. Let ¥ = (S, T, {L,}) denote a deformation data consisting of S, a subset T of ‘framed
places’ and L, € H'(D,,adp) for every v in S which defines a local deformation problem at v
with corresponding ideal I” of RY, with N, = H°(D,,adp) for every finite place vin S — 7.

0 — HY(F,adp) — H(Gal(Fs/F),adp) — €D H'(D,,adp)® € H(D.,adp)/N.
T

veS—T
— HY(F,adp) — H'(Gal(Fs/F),adp) — @ H'(D,adp)® @ H'(D,,adp)/L
T veS—T
— Hi(F,adp) — H*Gal(Fs/F),adp) — €D H*(D..adp)® @ H*(D,,adp)
T veS—T

— HE(F,adp) — H?(Gal(Fs/F),adp) —

Given a deformation data X as above, we let Rg the universal ring for T-framed deformations
of type 3 in the sense of Definition 2.2.7 in [23]. Let Ha(F, adp) denote the o-th cohomology of
the complex defined by ¥ as in [23] (See Chapter 2 in [76]).

As X reads ramification of classes in Hl(Gal(F/F) adp), by Hy(F,adp), we really mean

He(Gal(Fs/F),adp). We often write H(Fs, ad p) for Hl(Gal(FS/F) ad p) and do it similarly
with ad p(1) in place of ad p.



We let L denote the annihilator of L, in H'(D,,adp(1)) induced by the pairing adp x
adp(1) — F(1) and we let

HéjF,adf))zker( Y(Fg,adp(1) @H D,,adp(1 )/L\>

Let AY denote the completed tensor product over &

~

® . 11

of the quotient RY /I of R by the ideal IF defined by L, as v ranges over T. Let R” denote the
formal power series ring in 4| T| — dimp H°(Fs, ad p) variables with coefficients in &, normalised
such that

RS ~ Ry ® R".

2.1 Universal rings for global liftings
Suppose that n = 2 and that the (projective) image of p is not abelian. Then

Proposition 4. dimp Hy(F, ad p) equals

dimpHY, (F,adp(1)) + dimp HA(F, ad p) — dimp H°(Fs, ad p(1)) — x(Fs, adp)
+ ZVES X(DV? adﬁ) + ZVG(S—T) dll’l’l[{?L - dlI‘l’lIE‘]\fV

We say p is exceptional if p > 2, and p is reducible (and non-split) but not twist-equivalent to
an extension of the mod p cyclotomic character by the trivial character.

Proposition 5. Suppose for a place vin (S — T) N Seo that
dimpL, — dimpN, = —1.

TllCTl

dimp Hy,(F, ad p) = dimy Hy,, (F,ad p(1))—1+ Z (dimpL, — dimp H(D,, ad p))—[F : Q]

(S_T)_Soo

unless p is exceptional, in which case

dimp Hy(F,adp) = dimp Hyy, (F,adp(1)+ Y (dimgL, — dimg H(D,, ad 5)) [ F : QJ.

(S_T)_Soo

Proof. This can be proved as in Proposition 5 in Section 2 of [76]. If p is not exceptional (resp.
is exceptional), then dim H%(Fs,adp(1)) = 1 (resp. 0).

Also HZ(F,adp) is a subspace of the one-dimensional F-vector space H(F,adp), but the
N,’s at infinite places v force the dimension of the former to be strictly smaller than thac of the
latter, ie., HY(F,adp) = 0 (whether T = @ or not)).

Furthermore, it follows from the global (resp. local) Euler characteristic formula (resp. formu-

lae) that x(Fs,adp) = —=2[F : Q] (resp. > ¢ x(Dy,adp) = Z\,ESP —A[F, : Qpl + )5 4=

7



0). 0O
Remark. dimp H°(F,adp) = 1 whether p is odd or not, unless the image of p is abelian.

We now apply the formula above to

Yon = (SUSon, T, { L }vesuson)

to compute dim]FHéQ (I, adp), where T C § — S and, for every vin Sy = ((SU Sqn) —
T) — Seo, the local deformations at v are defined such that

dimg L, — dimpN, = dimpL, — dimg H%(D,,adp) = 1
if p > 2 and such that L, = H'(D,, adp) and
dimg L, — dimpN, = dimpH'(D,, ad p) — dimpH"(D,, adp) = 2

itp = 2.

22 S,
Following [11], for any infinite place v and a non-negative integer o, we let H*(D,, ad p)* denote the
image of H*(D,, ad’p) in H*(D,,ad p). The versal odd deformation ring R* (resp. the universal
ring RVD’_1 for odd liftings) gives rise to
e N, = Ny p(adp) C (adp)™ so that HO(Dy,adp)/N, is the zero-th Tate cohomology
group,

o I, = HYD,,adp)*.

We leave it as an exercise to check:
dimp N,
1 ifp>2,
= 1 ifp =2andp, is non-trivial,
4 ifp =2andp, is trivial,

and

dimp L,
0 ifp>2,
= 0 ifp = 2and p, is non-trivial,
3 ifp=2andp, is trivial.

By definition, dimp L, —dimp N, = —1 as required in Proposition 5. The dimension HY(D,,adp)*
is given by

dimg HY(D,,2d’p) — dimp Coker(H(D,,adp) — H’(D,,F)),

8



where dimg H*(D,, ad’ p) can be computed by the archimedean Euler-Poincare characteristic and
the local Tate duality

dimpad®p — (dim H°(D,,ad’p) + H°(D,, Homgp(ad’ 5, F)(1)))
(when p = 2, Homp(ad’ 5, F)(1) ~ ad 5/F), and where

dimpCoker(H°(D,,adp) — H°(D,,T))
0 ifp>2,
= 1 ifp =2 andp, is non-trivial,
0 ifp =2andp, is trivial.

23 S,

Following [76], let RP2, for every place v above p, denote the quotient of RPQO[[A, x A]] by
an ideal 172 parameterising (p, a(¢), (X1, X2)) where p is a lifting of p,, (@) is a root of the
polynomial X% — trp(¢)X + detp(¢) = 0 with ¢ = ¢(v) and (x1, x2) is a pair of characters
parameterised by O[[A, x A\]] satisfying the conditions

(1) wp(s) = x1(5) + x2(0) for o in L,

(1) trp(9) = (@) + B(6) where B(6) denores det p(@)/a(9),
(11D dec(p(@) — B(6)) =
(IV) 1+ det (x2(0)"p(5)) = tr (x2(0)~'p(0)) for 5 in I,

(V) (p(0) = x2(0))(p(7) — x2(7)) = (x1(5) — Xx2(9))(p(7) — X2(7)) for &, 7 in L,
VD (p(¢) — a(¢))(p(s) — x2(0)) = (B(¢) — a(¢))(p(c) — x2(0)) for 6 in L.

We firstly establish thac RP2 /A is Cohen-Macaulay and reduced. To see this, we follow the
proof of Proposition 5 in [76] and let SVD’A/)\ (resp. S\,D’A[l/)\]) denote the quotient of the ring
of polynomials over F (resp. L) in 5[F, : @P] + 5 variables, by the ideal generated by the 2-by-2
minors of the 2 x (2[F, : Q] + 2) matrix. It follows from Theorem 2.7 (resp. Theorem 2.11) in
[15] that S22 /X and ST2[1/A] are Cohen-Macaulay (resp. reduced). In fact, these rings are often
known as determinantal rings and are known to be normal domains.

Any lifting of p, parametrised by R\,D’A factors through the Galois group G, of the maximal
pro-p extension of F, whose inertia subgroup I is abelian of exponent p. The structure (i.e. gen-
erators and relations) of G, is given, for example, in Chapter VII, Section 5, of [66] or Section 5
of [61], while the quotient G, /I, is topologically generated by a Frobenius lift. Since I, is abelian,
the ‘relations’ boil down to one single equation in the case when F, contains a p-th root of unity,
leaving I freely generated by [F, : @,] clements (whether p is odd or not). It therefore follows
that the map RF’A/)\ — S\,D’A/)\, defined explicitly in the proof of Proposition 5 in [76], is an
isomorphism.

It follows from Proposition 2.2.1 in [83] that R\,D’A is flat over &. Proposition 2.3.1 in [83] (resp.
Theorem 2.1.3 in [14]) then proves R\,D’A is reduced (resp. Cohen-Macaulay).

Since RP2[1 /7] is isomorphic to a completion of SZ[1 /7] and the lacter is a normal domain,
it follows from the Zariski Main Theorem that R\,D’A[l/w] (hence RVD’A) is a normal domain. As a
result, Spec RVD’A/F is geometrically irreducible for a minimal ideal I' of O[[A, x A]].

9



Lemma 6. Let (p : D, — GLy(R), (), (X1, X2)) be a point of Spec R4 defined over an artinian

local O-algebra R (with residue field ). Suppose that AL 55 neither trivial nor the cyclotomic character.
Then the localisation of R\',j’A at the prime ideal defined by p is regular.

Proof. Since the completion of $74 is RPA it suffices to establish thar the localisation of S&4
at p is regular. To this end, we apply Theorem 2.6 in [15] to S\l,j’A. It remains to show that the prime
ideal corresponding to p does not contain the ideal generated by the 1 X 1 minors, i.e. the ideal
generated over & by the 5[F, : Q] + 5 variables. However, if it did contain the ideal, it follows
that x;1 and x2 would have to be equal (see the proof of Proposition 5 in [76]). O

24 Sqw

Let N be an integer, assumed merely to be > 1if'p > 2 and assumed to be sufficiently large if
P = 2. For vin Sqn we consider the ‘Taylor-Wiles” primes. Suppose that v satisfies Ng/gv = 1
mod pV. Suppose that p, is unramified, and is the direct sum of (unramified) characters Xo1s Xo2
D, — F* such that X, 1 (¢(v)) and X, 5(¢(v)) are distinct. Then it follows from Hensel's lemma
(see Lemma 2.44 in [26]) that every lifting p of p, is of the form p = X1 @ Xv2 of p, such that
Xv,1 (resp. xy,2) lifts X, 1 (resp. X, o) and X2 is unramified. For a such v, we define the subspace
L, C H'(D,,adp) = H'(D,,adX, ;) ® H'(D,,ad X, ) to be

L = HI(DV, adx\,yl) @ ker (HI(DV, adxﬂ) — HI(IV, adz’?)) )
Existence of a set S,y of such ‘Taylor-Wiles primes’ will be proved case-by-case in the follow-
ing.

2.5 Sgand S;
Let v be a finite place of F not dividing p such that Ng/gv = 1 mod p. Suppose that

p,: D, — GLy(F)

is trivial. Let ¢ :_(Cl, () be a pair of characters D, — &> such that the reduction {; : D, —
O* — F* (resp. (5 : Dy, — O — F*) of (1 (resp. (a) is trivial.

We may and will define the quotient RY /17 to be the maximally reduced and @-flat quotient
of RY such that, for any finite extension K of L, Homy (K, R,/I7*) is in bijection with liftings
D, — GLy(RY) — GLy(K) of the trivial representation of p, such that the semi-simplified
restriction to the inertia subgroup at v is given by <%1 é)) :

2

When ( is trivial, i.e., both ¢; and (5 are trivial, lec I7 denote the ideal of RY containing

I5¢ such that RE /195 s reduced and @-flat and Homy (K, R /IPS) parameterises the liftings

p : D, — GLy(K) of trivial representation D, — GLy(F) which has inertial type (((1) (1)) ,N)
for a non-trivial 2-by2 matrix N of GLa(L) in the sense of [79]. Note that the non-triviality of N

forces the image by p of the arithmetic Frobenius lift 6 in D, to have two eigenvalues with ratio

|IF, |, because pywp(a) N = |Fy|Npwp(0).

Proposition 7. o RY/IPC is reduced, Oflar, Cohen-Macaulay of equi-dimension 4 over O,

10



e Lvery irreducible component of Spec RY /IZ$[1/p] is formally smooth over L,

o RY/(IPC,N) is reduced,

e The generic poine of every irreducible component of RY/IZS has characteristic zero.
o [f ( is distinct, then RY /1P is geomerrically irveducible of dimension 4 over O

e [f( is trivial and L is sufficiently large, every minimal prime of RY/(I2¢,\) contains a unique
minimal prime of RS/ IP*.
A similar set of statements holds for RS /17,

Proof. Tt follows from Exercise 18.13 in [37] and Proposition 5.8 (3) in [79] if p > 2 and Corollary
B.10 in [78] it p = 2 that RVD/I\,D’C is Cohen-Macaulay. When ( is trivial, Spec RVD/IVD’C is a union
of two types of universal rings, one for unramified liftings and the other for Steinberg liftings. The
fibre Spec RY/(IP¢, ) is reduced since it is covered by reduced schemes (because of Proposition
5.8 (3) in [79] if p > 2 and the proofs of Proposition B.8 and Proposition B.9 in [78] if p = 2; and
because a localisation of a reduced scheme remains reduced).

To prove the last stacement, suppose that € is trivial. Let £, denote the inertia subgroup of D,
at v and K| denote the kernel of the projection of I, onto its maximal pro-p quotient (of rank 1).
The short exact sequence 1 — I,/K, — D,/K, — D,/I, — 1 splits, and let 7 (resp. o) denote a
topological generator of I,/ K, =~ Z, (resp. D, /I, ~ 7). Since p, is trivial when restricted to K, so
is any lifting p : D, — GLa(R) of p over an object R in €; and p is determined by the images in
GLy(R) of 7 and 6, subject to the condition that g7~ = 7. Tt therefore follows that R /15¢
is given by the quotient of a power series ring in 4+ 4 variables with coefticients in & by the radical
VT of an ideal T generated by 2 + 4 relations (2 because of the characteristic polynomial of p(7)
and 4 because of 676~ = 7). The ideal I is the intersection of two ideals— one corresponding
to the ‘unramified’ liftings p with trivial p() and the other 17 corresponding to the ‘Steinberg’
liftings p with p(o) satisfying |F,|?(tr p(s))? = (|F,| + 1)*det p(s). O

Let Sg (resp. Sp) denote the set of places v as in Proposition 7 with its corresponding deform-
ation condition defined by the ideal IVD’C C RL:' (resp. ]VD’St C Rl,j). As in [84], we will use the
distinction between the cases— when ( is trivial and when ( is distinct— to ‘avoid Thara’s lemma’.

26 Sy

Lemma 8. We may and will find a finite place v of F such that
e v does not divide p,
o ifp > 2 Np/qvisnot congruent to 1 mod p, p, is unramified and p(p(v)) is has equal eigenvalues,
o if p =2 p, is unramified and p(¢p(v)) has distinct eigenvalues.

For a such v, RY (i.e. /19 = &) parameterises the twists of unramified liftings of p, and it reduced
and Cohen-Macaylay. Furchermore, RS2/ (X, IP) is reduced.

Proof. When p > 2, see Proposition 5.5 (1) and Proposition 5.6 in (1) in [79]. When p = 2,
see the proof of Lemma 0.4 in [78]. Indeed, the assumptions on p(¢(v)) force any lifting of p, is
unramified (or equivalently, not of Steinberg type) up to twist. O

We let S4 be a set of such primes v.

11



2.7 Ag and Bg

For every v in T, we let AY denote the quotient of R, as defined above. In particular, we let

~

O O\ &
Ay, = (®v€ S/k )@aia,xa) -

Ag - Agf’®®v€ TfspAE
and

O A0 8 ~ O
By = AZP®®veT—(SpusR)AV '

It follows from sections above that the set of minimal primes of B is in bijection with the set
of minimal primes of A. This plays a role in computing the connectedness dimension of Ry in
Proposition 9.

28 p

Defmition. For any object R in &, a continuous irreducible representation Gal(F/F) — GLy(R)
is said to be dihedral if it doe snot factor through any abelian quotient, but its restriction to
Gal(F/E) does for some quadratic extension E over F. If this is the case, we say that it is E-

dihedral.

Let
S:SPUSRUSLUSAUSOO

and suppose that |S;, U Syo| is even. Suppose that p : Gal(F/F) — GLy(F)
e is unramified outside S,
e is trivial at every place in §, U S U S,

e is unramified at every place v in Sy; if p > 2, we assume that Ng/gv is not congruent to 1
mod p and p(¢(v)) has equal eigenvalues, while if p = 2, we assume that p(¢(v)) has distinct

cigenvalues.

2.9 Connected dimension

Proposition 9. Suppose that ( is trivial. For the connected dimension ¢(Ry;) of Ry, in the sense of [12] or
[13],
¢(Rg) = [F: Q +vF —2[Sk| -1

holds if p is not exceptional, while only
¢(Re) = [F: Q] + 5 — 2[Sg|

holds if p is exceptional.

12



Proof. Since RY is a quotient of a power series in dimp He(F, adp) variables over AY with
dimp Hy. . (F,ad p(1)) relations, it follows from Corollary 19.2.11 in [12] that

¢(RY) ¢(Ag) + dimp HE(F, adp) — dimp Hy,, (F,adp(1)) — 1

¢(AY) + dimp H2(Fs, ad p) — dimp HO(Fs,adp(1)) — [F : Q] — 1

v

by Proposition 5, where dimp H2 (Fs, ad p) = 0 and dimp H°(Fs,adp(1)) = 1 (resp. 0) if p is not
exceptional (resp. exceptional).

For a place v in Sg, RVD/IVD’C (where ¢ is trivial) admits a presentation as the quotient of a
power series over & with 8 variables by by 6 relations (Section 3 in [84]). It therefore follows that
A¥ admits a presentation as the quotient of a power series over By with 8| Sg| variables by 6|Sg]|
relations. By Proposition 1.8 in [90],

¢(A5) > ¢(Bs) + 2|Sg| — 1.

On the other hand, since the set of minimal primes in By, and the set of minimal primes in A are
in bijection, one concludes as in the proof of Lemma 3.21 in [90] that

¢(BS) > dim BJ/X = (dim AY — 4|Sg|) — 1.
Combining,
¢(A5) > dim AF — 2|Sg| —2 =14 (1 +2[F : Q] +~vp) + 4| T| — 2|Sg| — 2.

It therefore follows that

o(RY) > c(AY) — dimpHO(Fs,adp(1)) — [F: Q] — 1
(21F : Q)+ vp + 4|T| — 2/ Sg|) — dime HO(Fy, ad (1)) — [F : Q] — 1
[F Q]+ vy +4|T| — 2| S| — dimpHO(Fs, ad p(1)) — 1

v v

and therefore

¢(Ryx) [F: Q] +~p+4|T| —2|Sg| — dimpH®(Fs,adp(1)) — 1 — (4|T| — 1)

[F: Q] +~p — 2|Sg| — dimg HO(Fs, ad (1))

v

0

3  Modular forms and Hecke operators

Let D denote the quaternion algbera over F ramified exactly at S,U S (where | S US| is assumed
to be even). Let G denote the algebraic group over F defined by D*. We fix a miximal order R
of D once for all and, for every finite place v not in S, we fix an isomorphism (R ®g¢, OF,)* =~
GLy(OF,). B B

Let H = Homg(F,Q,) and H, = Homg, (I, Q,) for every place v above p.

For every finite place v of F, the preimage by

GLy(OF) — GLy(OF, /v) = GLo(F,)

of the subgroup of upper triangular (resp. unipotent) matrices (; i) (resp. <(1) T) )in GLo(FF,)
will be denoted B, (resp. B).

13



Fix a set ¢ of characters {(V = (C\"l c ) : B,/Bf — ﬁx} and a pair of tuples (k, £) €
v,2 VESR

ZH x 7ZH  Define V(kﬁ to be

V(i,e) = ® ® Vieo)) | ®c <® ﬁ(@))

vE SP T€H, vE SR

where Vi, ¢,y denote the representation of GLy(OF,) on a finite free &-module, with action of
GL2(OF,) defined in terms of the induction of the representation of the upper triangular Borel
subgroup of weight (;, k, — 2+ £,).
For an O-algebra R, let S(Ck,g) (R) denote the space of functions:
[ G(F\G(AT) = Vi, @0 R.

It U is a subgroup of G(A™) such that U, € G(OF,) for every vin S, and U, C B, for v in
Sgr, we let U acts on S(CM)(R) by

(v)(g) = (vur)f (&7)

where 7y, is the projection of 7y into the S, U Sg-component.

Let S(Ck 0 (U, R) denote the subset of functions f in S(Ckﬁe)(R) such that vf = f for every v in

U. When ( is trivial, we simply write Sg¢) (U, R).

Let U[ 7, i (resp. U[ 7] ) the open subgroup U of G(A™) defined in terms of the deformation
data g N <uch that

o U, forvin 8, is the subgroup of matrices in G(OF,) = GLy(OF,) which reduce mod the

r-th power of v to (S 1() :

o U, =G(Op)torvin S,
o U, is the pre-image, by GLy(0F ) — GLa(FF,), of the subgroup of matrices in GLy(F) of
the form (8 :) (resp. (é >{)) for vin Sg (resp. Sa).

o U, forvin Sq y, is the subgroup of matrices in G(OF,) = GLy(OF,) which reduces mod v

0 0 ker (FX — Ag,)
= (Or/¥))

By definition Uy is sufficiently small in the sense of Section 2.4 in [76] (see [76] and Lemma
3.2in [71] when p = 2) and

to ( . (resp. to where AQV is the maximal pro-p quotient of

UgQA/Ug]w\ = H AQvV'
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For v not in S, we let 7, (resp. S,) denote the Hecke operator acting on S(Ck’g)(U, R) corres-
ponding to (78 (1)) (resp. (78 72) ). The module S(CM)(U, R) also comes equipped with action
of

o U, (resp. S,) for every place v above p corresponding to (Tg (1)) (resp. (77\, 79 )) norm-

0
alised by multiplying H 7(m,) ™" (vesp. H 7(m,) W +2—2))

TEH\* TEH\/

ty _ , or 0

e for every place v above p, an element ¢, = vl in the diagonal torus 5
yP t 5 0 oy
v,2 F,

naturally acts (without being normalised) and we follow Definition 2.23 in [43] to define

(t) = Utvj;t\, -1 (tv,l/ Lo 1)

fort = (t,) in H (ﬁOFv ;X)
; F,

Let Tr), 500 ( Ug}) +» R) denote the Hecke algebra generaced by the images in EndR(S(Ck’Z) ( Ug]j wR)
of T, and S, for vnotin SU Sq v, U, for vin §, and the S;. When R = &, we shall not make
reference to R. When k = 2 and £ = 0, write 2 in place of (k, £).

For R = 0 or L/ 0, Section 2.4 in [43] defines the Hida idempotent e on

S(Ck,e) ( Uglw, R),
Lll’ld
Ty 5o (Uss oo R),
and we ]et
oS (Usg,v, R) = lim S (U5, B)

and
eTZQ,N( UEQ,N? R) = 11:9 eTszQ,N( U[r]

EQ,N’

R).

When Sqn = @, we simply write eS¢(Us, R) and eTx(Us, R) respectively. If R = €, we
make omit our reference to the coefficient R. Naturally, eS¢(Us, ) and eTx,, ,(Us,, ) are A-
algebras via ().

When ( is trivial and it is necessary for us to emphasise it, we omit the reference to ¢ in the
notation.

Given a maximal ideal of eTx( Us,) for the deformartion dara ¥ in which the set of characters
( is trivial, the congruence with eS(Us:)/A allows us to define the corresponding maximal ideal
m C eTx(Us) for any 3 as above (since € is trivial mod A). Let Mg,y denote the pre-image of m
by
eTZQ,N(UEQ,N) —» €T2( UE)
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Lemma 10. o eS( Us,y, L/ O) . . is free over A of rank dimpe S Ug] . ) for sufficiently large

mQ,N
T.

\

o eS( Usg .y L/ﬁ)XIQ /M, where my is the maximal ideal of A, is isomorphic to eS¢ ( Ugi o IF)mQ v

Proof. See Proposition 2.20 in [43] for the first assertion— essentially, it follows from Us,, C
Us, being sufficiently small. The second assertion follows by definition. [

Suppose that p is modular, in the sense that p =~ p,, for a non-Eisenstein maximal ideal m in
Tx(Us). There exists a continuous representation

PEon - Gal(F/F) - GLQ (eTEQ,N(UEQ,N)TTIQ,N)
lifting p, which is unramified outside S U Sq y and which satisfies

(1 prg (B(¥) = T,

and
detpy s (6(4)) = (Npyg)S,

for every v not lying in S U Sq v (where ¢(v) is a geometric Frobenius lift).

For every v in Sq w, the restriction of py, , at v is a lifting of a direct sum of unramified

QN
characters X, 1, X,2 : D — T;;Q o Let ay (resp. B,) be a root in eTx, \ (Us, y)mg v of the
characteristic polynomial of ps,  (¢(v)), lifting X, 1 (¢(v)) (resp. X, 2(¢(v))) in IF; this is given by

Hensel’s lemma. We define a ‘Hecke’ operator

Uy 1 eSS (U, L))y, — eSS(UY

XqQ,N?

L)0)

ITIQY N

corresponding to the matrix ( ) where 7 is an element of F, with non-negative valuation.

0
Define the quotient HéQ’N( Us,.y) of eS¢ (Us, L/O)n,., to be the Pontrjagin of the sub-
module
HS, (Usy )" = | I (Un = 8) | e8(Usqy L) OV € eS8 (Usy s L/ O
VESQJV

(7, is a uniformiser at v) cut out by the deformartion data 3y and the local Langlands correspond-
ence (see Section 4.2 in [43]). Analogously, one can define the quotient eSC( Ugo o L/0O))

moN
Hg (U, ) with UZ in place of U] .

q,N

We may define the quotient HXCJQ,N ( Ul OIN)oteS (Usy, , O/X)

g,n?

is the inverse limit of HéQ o Ugl o O/N).

similarly; Hg Usq xs 0)

mqQ,N Q,N (

There exists a character

Xv * F\X - (eTZQ,N<UZQ,N)‘“Q,N)X
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such that, for every 7 in F, with non-negative valuation with respect to v, the operator U acts on
Hs, ,(Us, . O) by x,(m); and the restriction of px, , at vin Sq v is of the form (x, o Art;") &
Xv,2 Where Xy 2 is an unramified lifting of ’x, 5.

Let
Tx,, C End(H, Zu o)
denote the image of Tx, \ (Us, y)mgy In End(HC N ) When Sq v = &, we simply write Ty, and
Hg for Ty,  and HéQ’N.

Let

u¢ _ rg¢ O
HEQ,N - HEQ,N ®REQ,N RZQ,N

for which we write IT—IED’C when So v = @.

By definition, HéQ,N( U;Q“‘ ) comes equipped with action of UZ) \/ Z[;l L= AN = HveSQ,N Ag
Proposition 11. ) Hé v (Usig ) is afinite free (hence flat) module over A[{Aq,n], and the coinvari-

ants OfHé (Usqy) by O[Aq N] are HECH N U;Q,N>'

v
o The map <HV€So Uz, — ﬁv)) : HgQ]\(Ug{O o O0) — HS(Us, O), which sends ¢ €
HS (Uf ,0)= Homg(Hs,, ,(Us, )", L/O) to the continuous homomorphism

XQ,N QN

Uny =X
{eSC(U&L/ﬁ)m - eSC( X, wL/ﬁ)mk N e L( " HEQN(U& V) i) L/ﬁ < Hé(UE’ ﬁ>’

s an isomorphism.

Proof. See Lemma 4.9 in [43]. For the second assertion, see also Lemma 3.2.2 in [23]. (J

4 pisirreducible with insoluble image

Suppose that p > 2.

Lemma 12. Suppose that p is absolutely irreducible when restricted to Gal(F/F((,)). If p = 5 and the
projective image of p is isomorphic to PGLy(IF5), we furthermore assume that the kernel of the projective
representation of p does not fix F((s). For every N > 1, there exists a finite set Sq y of finite places v of
F such that

e Ny/gv =1modp?,

® p, is a direct sum of distinct unramified characters,

o [Son| =¢=dimpH} (F,ad p(1)), ie. [Sqn| is independent of N,
o if we let X y denote the deformation data

(SUSonN, T,...,),

then RS, is topologically generated over AS by r = g — [F : Q] — 1 elements.
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Proof. This is standard and follows from Proposition 5. See [76]. [J

Suppose that p = 2. Let Fyy = F((ox) and K be the subfield of F fixed by ker ad p. Let Ky

denote the compositum of K and Fy.

Definition. Let Ny, be the largest integer amongst those N > 2 such that the totally real
subfield of Fy is contained in F.

We have an inflation-restriction exact sequence:
— H°(Gal(Fs/Fy),adp(1)/F) — H'(Gal(Fy/F),F) — H*(Gal(Fs/Fy),adp(1)) —
and if p is irreducible with insoluble image, H(Gal(Fs/Fy), ad p(1)/F) = 0 (Lemma 4.3 in [57)).
Recall, by definition, Hi, (Fs,adp(1)) to be the kernel of

H'(Gal(Fs/F),adp(1) —>@H D,,adp(1))/L+

where the direct sum ranges over the union of Sy and S n; at every infinite place v of F, we have

LE = (Do adp())/1) € H'(Dadp(1))" = H'(D,, adp(1),
with
dil’l’l]FLvl

B 0 ifp, is non-trivial,

N 1 ifp, is trivial,
while at v in S n, we have L = H*(D,,adp)*. Parenthetically, it follows from the local Euler
characteristic formula and the local duality, one sees dim H'(D,,adp(1)) = dim H'(D,, ad p) is
0 (resp. 4) if p, is non-trivial (resp. trivial).

Defmition. As in Section 2, we define HéQ (Fs,TF) to be the subspace of H'(Gal(Fs/F),F)
defined by local conditions L, = Hl(DV, [F) at Soc and Sq n (whether v is finite or not). It follows

from local Tate duality that, for infinite v, we have

dimpL,
B 0 ifp, is non-trivial,
N 1 ifp, is trivial,

As in Section 2, we define the dual Selmer group Hy,,  (Fs,F) as the kernel of
QN
H'(Gal(Fs/F),F) — @Hl (D,,F)/ L+

where v ranges over Sy and Sg n. The dimension dim]FHéO (Fs, ) is computed as

dlm]FHzl)% (Fs,]F) + HO(Fs,]F) — HO(FS,IF(l))

© S dimel, [ dimg H(D,,F) — Ny, H(D,, F)| + 3 H'(D,,F) — H(D,, F)
= dimgHy, (Fs,F) + [So.n].
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By definition, H}

L
ZgN

irreducible with insoluble image (as observed above); in particular, under the assumption,

(Fs,F) maps to dimpHy,, (Fs,adp(1)), and they are isomorphic if p is
N

dimFHééN(Fs, F) = dim]pHééN(FS, adp(1)).

Lemma 13. Suppose that p has insoluble image. For every N > Ny, there exists a finite set Sy of finite
places v of F such that

Np/gv = 1 mod p»,

p, is a direct sum of distinct unramified characters,

|So.n| = g, where g = dim]FHéL (F,ad p(1)) — 2,

if we let Xy n denote the deformation data
(SUSonN, T,...,),
then RS, is topologically generated over A by r = 2q — [F : Q] + 1 elements.

Proof. Because p = 2, the adjoint representation ad p is self-dual, i.c., ad p(1) =~ ad p. Since p
has insoluble image,

H'(Gal(Ky/Fy),ad (1)) =0

(see Lemma 4.3 in [57] for example).
Suppose that v is a class in H'(Gal(Fs/F),adp(1)) which has a non-trivial restriction in
H'(Gal(Fs/Fy),adp(1)), and therefore in H'(Gal(Fs/Ky),adp(1)). In this case, we have

0 — H'(Gal(Ky/Fy),adp(1)) — H'(Gal(Fs/Fy),adp(1)) — H'(Gal(Fs/Ky),adp(1)),

where H'(Gal(Ky/Fy),adp(1)) = 0and H'(Gal(Fs/Ky),adp(1)) = Hom(Gal(Fs/Ky),ad p(1)).
In particular, v(Gal(Fs/Ky)) is a non-trivial Gal(Ky/Fy)-submodule of ad p(1). One may

then find an element 6 of Gal(Ky/Fy), hence of Gal(Fs/ Fy), satistying the property that given

anon-trivial irreducible Gal( Ky / Fy)-module Z (the scalars in My(FF)) of ad p, the image ad p(a)

of 6 has an cigenvalue other than 1 and has an cigenvalue 1 on Z. It then follows that, cither o

or its shift by an element of v(Gal(Fs/Ky)) satisties the condition that v(a) is not contained in

(6 — 1)ad p. By the Cebotarev density theorem, 6 gives rise to a finite place v of F such that

G equals ¢(v) (up to conjugacy),

Npgv=1 mod p¥,

v splits completely in Fy,

p, is the direct sum of character ), ; and X, 5 and the restriction of ¢ at v lies non-trivially
in

HY(D,/1,,ad¥, ,(1)) = H(D,/L,adp(1))/ L} ~F
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We apply the argument repeatedly to an F-basis of Hy,, (F,adp(1)) € H'(Gal(Fs/F),adp(1))
that restricts to a non-trivial class in H(Gal(Fs/Fy), ad p(1)). The resulting subspace HéL (F,adp(1))
QN

5
of‘l—léL (F,adp(1)) therefore lies in the kernel of H' (Gal(Fs/F),adp(1)) — H! (Gal(FS/FN), adp(1));
and the latter is isomorphic to H*(Fy, F) by inflation-restriction, and dimp H'(Gal(Fy / F),F) =

2 for N > Ny, since the maximal elementary abelian 2-quotient of Gal(Fy/F) is of rank 2.

One can indeed establish that Héé,N(F’ adp(1)) equals the kernel H'(Gal(Fy/F),F); this

is in stark contrast to the setting in [88] whose Proposition 2.21 observes Hy,, (F,adp(1)) is
QN

strictly contained in H'(Gal(Fy/F),F) albeit under the assumption that there is at least one
infinite place v at which p is non-trivial. To see the equality in our setting, we observe, for every
infinite place v, the image of

H'(Gal(Fy/F),F) — H'(D,,F) L H'(D,,dp)

(Fy is no longer totally real) lies in L. Tt suffices to show that the image Im(f) of f equals L .
As [ is part of the exact sequence

— H'(D,,F) L H'(D,,adp) % H'(D,, (adp)/F) —
with dual
«— H'(D,,F) £ H'(D,,adp) a HY(D,, (adp)/F)¥ = H'(D,, (ad’)"(1)) = H'(D,, ad"p) «—
we see that Im(f)* = coker(f) = ker(f¥) = Im(g¥) = L.

Forvin Sq n,
dim L, — dimp H(D,, adp) = dim H'(D,, adp) — dimg H°(D,, ad p) = dimp H°(D,, ad p) = 2

It then follow from Proposition 5 that dimp Hy, | | (F, ad p) is computed by dimpg H, (F,adp(1))—
<0 Q,N

1+2[Son| —[F:Q =2—-142¢—[F:Q] =2¢—[F: Q]+ 1, where |Sqon| = ¢ =
dimg A}, (F,ad p(1)) — dimgH., (F,ad p(1)) = dimpHy,. (F,ad p(1)) — 2. O
Q,N

Definition. When p = 2, we let Vo y denote the group of characters of the Galois group of the
maximal abelian pro-p extension of F unramified outside Sq x which are deformations/liftings of
the trivial character over IF. This acts freely on Rgow ‘by twisting’. As observed in Lemma 5.10 of
[57], Vo, n has rank dimﬂrHéQW (Fs,TF); if we let VQ denote the O-algebra ofdimFHgleJ\ (Fs,TF)-

copies of Z,, then we have a surjection Vo — V.

Definition. By slight abuse of notation, we let RS /Vq v denote the subring of elements in
) EQJ\ Q7

RgQ . which are invariant under action of V x. By definition,
. O . O . 1 . 0
dim Ry, | /Von = dim Ry, | — dimpHy, | (Fs,F) = dim Ry — (24 |Sq,n])

Following Lemma 12 and Lemma 13, we let AgQ denote the formal power series ring over AY

with 7 variables, with the variable chosen such that RgQ , 1s a quotient ongQ:

0 0
AEQ — RZQ,N'
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Ifp = 2, we furthermore let Ag&v denote the formal power series ring over AF withr—(2+¢)
variables, similarly defining a surjection

0,v 0
AZQ - REQYN/VQvN'

Let Aq be the free Z,-module Z7 of rank ¢. For every N, Aq surjects onto

Fix an isomorphism

Let | denote the kernel of
ARRI[[AQ]] = AQRT[[S1,..., Sol] — A
which sends every variable in Aq to 1 and all 4|T'| — 1 variables in R 0 0.

Lemma 14. Let A be a minimal ideal of A.

o [f(isdistince (i.e. for every vin Sg, (1 and (, o are distinct), then Spf AF @ AJA is O-flar and

g@omctrically irreducible of relative dimension over O
14+ 2[F : Q] +~p+4|T|.

o [ ( is trivial (ie. for every vin Sg, (.1 and (2 both trivial) and if L is sufficiently large, then
SptASA /A is equi-dimensional of relative dimension over €&

L4+ 2[F : Q] +~p+4|T|.
Furthermore,
e cvery minimal prime of AS ® A/(A\,N) contains a unique prime of AS @ A/ A\,
o AY is O-flar and Cohen-Macaulay,
o AY /N is generically reduced
Proof. This follows from Section 2. See Lemma 9 in [76]. I

g0 O o _ |
Let Hy = Hs,, ®o R~ and Ts,, =Ts,y®o R where Ty,  is defined as in Section
3. The Taylor-Wiles ‘level N-modules’

A®sRV[[Ag]]
AS =AQ(X,,....X]] — RS, — 7% C End(HE )
Rz — Ty,
Ry, — Ty
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ifp > 2and Ry /Vqun (resp. Ag&v) in place of RgQ . (resp. AgQ) if p = 2; and they ‘patch’

So.N
together to define

— TEDQ C End(HEDQ)

| | |

Rs, — Ty C End(Hg)
if p > 2 and

s T RgQ/VQ — TEDQ C End(HZDQ)

| |

RZ — TE C End(Hg)

Remark. When p = 2, action of Vg is ‘twist’ by global characters, whilst action of Ag mani-
fests itself as the ‘diamond’ operator.

Lemma 15.

Hg, /] ~ Hs,.
Proof. Standard. O
Theorem 16. Hgo, with trivial (, is a faithful module over Ago.

Proof. We sketch a proof, which is based on one for the similar assertion in [76]. Firstly, suppose
thatp > 2. When ( is distinct, for every minimal prime A of A, the Krull-dimension of irreducible
qu/A is

L7+ (1+2[F: Q] +~) +4|T]
= 1+ @—[F:Q -1+ 1+2[F: Q| +~p) +4[T|
= 14+q+[F:Q]+~vp+4T|.

On the other hand, the AgQ—depth of‘HEDQ/A is at least the A&@ RP[[Ag]]-depth of‘HEDQ/A; as
HEDQ/A is free as a (A@ RP[[Ag]]/A)-module, the latter equals the Krull-dimension of A@ RP[[Aq]]

which is greater than or equal to

1+ (1+[F:Q4+vp) +4|T|—1+¢q
= 1+4+q+[F:Q]+~F+4T).

For a minimal prime A as above, it follows from Lemma 2.3 in [84] that HEDO/A is a nearly
faithful module over AEQ/A when ( is distinct. By Lemma 2.2, 1, [84], HZDQ/(A, A) is a nearly
faithtul AEQ/(A, A)-module when ( is trivial. It then follows from Lemma 2.2, 2, [84], HEDQ/A is
a nearly faithful AgQ /A-module when ( is trivial. As this holds for any minimal prime A, FIZDQ is

a nearly faichful Ago—modulc when ( is trivial.
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On the other hand, p and the generators of ] define a system of parameters ongQ, which indeed
is a regular sequence since Ag | is Cohen-Macaulay. It therefore follows that AF /A is reduced and
the regularity of A then establishes that AF is reduced. It follows that HEDQ is indeed a faichful

module over AF .
Q

If p = 2, the Krull-dimension of‘AgQ/A is

1+ (r—2—q)+ (1 +2[F: Q]+ ~p) +4|T]
= 1+2¢—[F:Q+1-2—¢q)+ (1 +2[F: Q| +~p) +4|T|
= 14+q+[F:Q+~r+4T|

and the Ag&v—depth ofHEDO /A is again at least the A@ RP[[Aq]]-depth ofHEDQ/A. The rest follows
similarly. [J )

Corollary 17. qu /] = Ry, is reduced and Hy; is a faithful Ry-module. In particular, Ry, >~ T,

Proof. See [76]. The outline of the proof in [76] is as follows. Firstly, since HEQ is a faichful
AgQ—module and ASQ/] is isomorphic to Ry, it follows from Lemma 2.2 in [84] that IT-IEDQ /] is a
nearly faithful Ry, ~ AF /J-module. Therefore it suffices to prove that AF /] is reduced. To prove
that AgQ /] is reduced, one observes that (AgQ /1)[1/p] is generically reducea; indeed, one can make
appeal to Lemma 18 below to prove that the localisation of (AgQ /])[1/p] atits (any) minimal ideal,
containing J and p, is reduced. As AEQ /] is Cohen-Macaulay, so is (AEQ /[1/p], and therefore it is
reduced. Since AgQ /] is noetherian local, one sees that p is AgQ /J-regular and therefore that AgQ /]
is p-torsion free. As aresult, A5 /] injects into the reduced ring (A5, //)[1/p] and the reducedness
OFA%Q/] follows. The injectiviti7 of the surjection Ry, — Ty, follows from the faithfulness of Hy.
as an Ry-module. OJ

The following is due originally to Hu-Paskunas [46]:

Lemma 18. Let R be a noetherian local ring and lec M be a faithful, Cohen-Macaulay, finitely generated
R-module. Letr, 7y, . .., 7N be asystem of parameters of R, let | denote the ideal generated by ry, . .., ry
andlet R=R/] and M = M ®pg R/]. Suppose that

o M(1/r] is Cohen-Macaulay and faithful over R[1/r],
o MI[1/r] is a semi-simple R[1/r]-module,

o forevery primeideal Ain R[1/r] which is the pre-image of a maximal ideal m that lies in SUppz1 /1 (M[1/r)),
the localisation of R[1/r] ac A 'is regular.

Then R[1/r] is reduced.
Proof. See Lemma 19 in [76]. O

5 pisirreducible with soluble image

5.1 pis not induced from a character of an imaginary quadratic extension of F

in which every place of F above p does not split completely

Suppose F satisfies the following conditions:
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e [F:Q)]iseven,
e when
xp > 2

* the restriction of p to Gal(F/F((,)) is reducible (while p remains irreducible), hence p is
abelian when restricted to Gal(F/F™) for the quadratic extension FT over F in F(,),

« F* is imaginary over F,
hold simultaneously, suppose that not every place in S, splits completely in FT
e when
xp =2
* p has soluble image (while p remains irreducible), hence p is abelian when restricted to
Gal(F/E) for a quadratic extension E over F,
* E is imaginary over F
hold simultaneously, suppose that not every place in S, splits completely in E,

Definition. A prime ideal I' of Ry, is said to be pro-modular if I' contains the kernel of the
surjective homomorphism 7 = r(p) : Ry; — T¥; in which case, Ry, — Ry /T factors as

Rg - RE/P

l T

T_l
TE — RE /1(61’ r
where the varical maps are both surjective and it is pro-modular in the sense of [82].
Definition. A prime I of Ry; is said to be admissible if is is of dimension 1 and contains p and if

we let p = pr : Gal(F/F) — GLy(R) where R = Ry denotes the normalisation of the quotient
of R by I' in its field K of fractions,

o ['is of dimension 1 and contains p; enlarging & if necessary, we may assume that R is iso-
morphic to a power series ring over [F with a single variable, say ),

p ®g K is irreducible,

det p is of finite order,

if p > 2 (resp. p = 2), then p is not FT-dihedral (resp. p is not dihedral),

for every vin S, (resp. Sg) , the restriction p, of p at v is reducible with distinct diagonal
characters (resp. is trivial),

e ['is pro-modular.

We firstly assume that an admissible prime I' of Ry; exists— this will be proved in Proposition 32.

Following the discussion at the beginning of Section 7 in [81] (and Section 4.6 in [90]), we
may, and will, replace A by its finite faithfully flat extension in such a way that the natural map
A — Ry, gives rise to an isomorphism modulo I' and is isomorphic to the formal power series ring
[F[[7]], and the induced map on completed-localisation at I" also defines an isomorphism on their
respective residue field (isomorphic to F[[a]]).
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5.2 Selmer groups
Let R = F[[#]] and p : Gal(F/F) — GLy(R).

Definition. Given a module over R, by the order of an element of the module, we shall mean
the smallest power of 7 that annihilates it.

Let Fy = F((v) and Fy denote ilc compositum of the Fy's. Following [23] and [90], we
define (dual) Selmer groups for p : Gal(F/F) — GLa(R) that we are interested in: Fix a deform-

ation data
Y= <S7 T7 (L’)VES)

where it is assumed that S contains S, and Sy, and while 7' = § — S as before.

Suppose that Sq v is disjoint from § as in previous sections. Following [90] Section 5.2, define
Hyj  (F,adp ®g R/7") to be the cohomology group defined as in Section 2 in [76] with R/7"
in place of F, S U Sq v in place of S (we write subspaces L") C HY(D,,adp ®p R/7") defined
analogously over R/7" at SU Sq n). Similarly define H,, (F,adp(1) ®r R/7") following Sec-

Q,N
tion 2 in [76].

Asr > 1 varies, the HéQ (I adp ®@g R/7") (resp. HéL (F,adp(1) ®g R/7")) defines a

! QN
direct system system, and let

Hy, (F,adp ®g K/R) =lim Hy,  (F,adp®g R/7")

ol
(resp. H;M(F, adp(1) @ K/R) = lim Hé(% (F.adp(1) ®g R/7"))
denote the limit.

By mimicking the argument in Section 4 of [2], it is possible to prove:
Proposition19. e H'(Fs,adp ® R/7*) ~ H'(Fs,adp ® K/R)[m'].
o [orevery place vin S,
H'(D,,adp ® R/7*) — H'(D,,adp @ K/R)[7']

and

HY(D,,adp ® R/7)/LY — (Hl(Dv,adp@) K/R)/L) [7°]

are surjective and their kernels are annihilated by a power of 7 independent of s.
o [orevery place vin S,
H°(D,,adp ® R/7n*) — H°(D,,adp @ K/R)[n']

and

H’(D,,adp ® R/7")/ N — (H'(D,adp @ K/R)/N,) [n']

are surjective and their kernels are annihilated by a power of 7 independent of s.
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® The kernel and the cokernel of
Hy(Fs,adp @ R/m') — Hg(Fs,adp @ K/R)[n’]
have orders independent of s.
e The kernel and the cokernel of
Hy. (Fs,adp(1) ® R/m*) — Hy. (Fs,adp(1) ® K/R)[w]
have orders independent of s.
Proof. The exact sequence 0 — adp ® R/7 — adp ® R/7" = adp ® R/m" — 0 give rise to
H'(Fs,adp ® R/n’) — H'(Fs,adp ® R/n")[#’] — 0

whose kernel is computed by the cokernel of 7* : HY(Fs,adp ® R/7") — H°(Fs,adp® R/7").
Since p is absolutely irreducible, H(Fs,ad p® R/7") ~ R/7" and therefore 7 is surjective. This
results in the first assertion.

Similarly, for every place v in S, we have a surjection

HY(D,,adp ® R/7n") — H'(D,,adp ® K/R)[n'] — 0.
We have

0 - LY — H'(D,adp®R/7") — H'(D,adp® R/7")/LY — 0
! | |
1 a
0 — LV[TFS] N Hl(DV,adp@K/R)[ﬂ's] R <H (Dv7 dP®K/R)) [Trs]

L,

Since LV(“) — L, [71“‘] is surjective (hence the cokernel is trivia]), the kernel of the second vertical
map surjects onto the kernel of the third map.

The third assertion follows similarly.

To prove the fourth assertion, let

PY(Fs,adp ® R/7) = @ H(D,,adp @ R/7) & €D H"(D,,adp @ R/7)/NY,

veT vesS—T

P4(Fs,adp @ R/n') = @ H'(D.,adp @ R/n') & @) H'(D,,adp® R/7)/LY,

veT veS—T

and let #&(Fs,adp ® R/7') denote the kernel of
H'(Fs,adp ® R/7') — P5(Fs,adp ® R/7").

We similarly define ones with K/R in place of R/7’. By defiition, we have

0 —  H&(Fs,adp@ R/7*) —  HY(Fs,adp® R/7m) —  PL(Fs,adp@ R/7')  — 0
! ! 1
0 — JL(Fs,adp® K/R)[7] — HY(Fs,adp® K/R)[#'] — ®PL(Fs,adp® K/R)[7’]
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from which we deduce that the kernel of #5(Fs, ad p@ R/7*) — #5:(Fs,ad p& L/ R)[7'] is trivial
(by the first assertion), while its cokernel is computed by the kennel of P&(Fs, adp @ R/7*) —
P&(Fs,adp ® K/R)[m'] which is annihilated by a power of 7 independent of s (by the second
assertion). We also have

P3(Fs,adp ® R/")

— — H{(Fs,: ¢ L(Fg,a s
0 HO(Fs,adp @ R/) s(Fs,adp ® R/7") —  H5(Fs,adp® R/) - 0
l ! l

)[ﬁ] — Hi(Fs,adp® K/R)[w'] — #L(Fs,adp® K/R)[w]

PY(Fs,adp® K/R)
HO(Fg,adp ® K/R)

and the fourth assertion follows if

-@g(Fs,adp(@R/ﬂ'g) @g(Fs,adp®K/R) [ s].

— '] is sur-
HO(Fs,adp® R/m)  \ H(Fs,adp@ K/R)) """
jective and its kernel is annhilated by a power of 7 independent of 5. Because of
P (Fs,adp @ R/7)

0 .2 s 0 Fe 3
0 = H(FsadpeR/m) —  FplfsudpeRfm) - HO(Fs,adp ® R/m) -0
| l

0(Fe a
0 — HO(Fsadp K/R)w] — 9Y(Fs,adp@K/R)w] — (iggz’;jzgggﬁﬂ ~ 0

it suffices to prove it for PL(Fs,ad p @ R/7') — PL(Fs,ad p @ K/R)[m']. This follows from the
third assertion.
The fifth assertion follows similarly. O

Remark. We shall write henceforth write Hy(Fs,adp ® R/m) ~ H{(Fs,adp ® K/R)[7]
(and similarly for H}., (Fs, ad p® R /7)) to symbolise the ‘asymprotic similarity” as R/r*-modules.

Everything we need is proved in [1]. We give it a slightly different narrative to be consistent
with our approach. The underling space of ad p is the set of 2-by-2 matrices over R and let Z be
the normal subgroup of scalar matrices.

We have

0 — H'(Gal(Fy/F),Z) — H'(Fs,adp(1)) — H'(Gal(Fs/Fy),adp(1))

where HY(Gal(Fy/F), Z) is zero if p > 2 and is of rank 2 over Rif N > Ni, (Lemma 3.2.3in [1];
the result is the R /7" -analogue of the observations earlier dimgker( H' (Fs, ad p) — H'(Gal(Fs/Fy),adp)) =
2 in the proof of Lemma 13); and Gal(Ky/Fy) is isomorphic to the image of p.
In the following, we will be interested in a non-trivial class in H'(Fs,ad p(1)) whose image
in H*(Gal(Fs/Fy),adp(1)) is non-trivial (if p > 2, then any class in H'(Fs,ad p(1)) will be).

This is, in turn, studied in terms of the exact sequence
0 — H'(Gal(Ky/Fy),adp(1)) — H'(Gal(Fs/Fy),adp(1)) — H'(Gal(Fs/Ky),adp(1)).

Let G = Gl and G = SLy. Let A C G(R) denote the image of p and A denote A N
E(R) I p is not dihedral (resp. is dihedral), then it follows from p being ‘p-distinguished’ with
its determinant of finite order (resp. from p being not dihedral) that A < G(R) — G(F) has
non-trivial kernel, and it follows from Proposition 1.7.5 in [1] that A is Zariski dense in G over
K. Since the image by p of a complex conjugation defines a non-trivial unipotent element in A,

it follows from Proposition 3.1.2 in [1], which is based on Theorem 0.2 in [72], that there exists a

27



sub-extension L of K of finite index and an algebraic group H over L such that A is thought of
as an open compact subgroup of H(L) up to conjugation in G(L). By abuse of notation, we write
G (resp. K) for H (resp. L). With these in mind, we think of A as an open compact subgroup of
G(R).

Lemma 20. Fix r. There exists a non-negative integer s, independent of N and r, such that for any ele-
ment v of H'(Gal(Fs/Ky),adp(1)/Z(1) @ R/7") of order at least 7(V), there exists an element & in
Gal(Fs/Ky) such that v(c) has order at least r(v) — s.

Proof. This is proved in Lemma 3.2.5 in [1].

Remark. This lemma plays the role of Lemma 6.5 in [81] when p > 2 and p is not dihedral, and
Lemma 2.5.2 in [80] when p > 2 and p is dihedral but not F*-dihedral.

On the other hand, it follows from HY(Gal(Ky/Fy),ad p(1)/Z(1)) = 0 (Lemma 3.1.4 in [1])

that we hZ{Vﬁ an exact sequence

0 — H'(Gal(Ky/Fy), Z(1)) — H'(Gal(Ky/Fy),adp(1)) — H'(Gal(Ky/Fy),adp(1)/Z(1)) — - -

where the image of H'(Gal(Ky/Fy),adp(1)) — H'(Gal(Ky/Fy),adp(1)/Z(1)) proved to
be of rank at most 1 over R by Lemma 3.5.1 in [1]. This remains true over R/7". Indeed, it is
possible to prove

Lemma 21. There exists a non-negative integer s, independent of r, such that 7* annihilates the image of

HY(Gal(Ky/Fy),ad p(1) @ R/a") in H\(Gal(Kx/Fy),ad p(1)/Z(1) ® R/x").

Proof. Let A, denorte the principal congruence subgroup of matrices in A C G(R) which are
congruent modulo 7 to 1 in E(R/W€>. Since A is open compact in E(R), there exists a sufficiently
large e such that A = Gal(Ky/Fy) contains A,.

Firstly we observe that the assertion is equivalent to establishing that 7* annihilates the coker-
nelof HY(A, Z(1)® R/7") — H*(A,adp(1)® R/@"). This, in turn, is equivalent to establishing

that there exists a non-negative integer s such that 7* annihilates the cokernel of the composite
H' (A, Z(1)®@ R/7") — H'(A,adp(1) ® R/7") — H'(A,,adp(1)/Z(1) ® R/7").

Since HY(A, Z(1)®@ R/7") — H'(A,ad p(1)® R/7") is injective, it suffices to show thar the ker-
nel of the composite H'(A, ad p(1)® R/7") — H'(A,, adp(1)/Z(1)@R/7") is HY (A, Z(1)®
R/7"). If N is an open normal subgroup of A contained in A,, then the subspace of N-invariants

of adp(1)/Z(1) is trivial, and therfore the composite

HY (A, adp(1)/Z(1)@R/7") — H'(A,,adp(1)/Z()@R/7") — H*(N,adp(1)/Z(1)@R/7")

is injective (since the N-invariants of ad p(1)/ Z(1) is trivial); it therefore follows that H' (A, ad p(1)/ Z(1)®

R/7") — HY(A,,adp(1)/Z(1) ® R/@") is injective. The kernel of HY(A,adp ® R/7") —
H'(A,adp/Z(1) ® R/7") — HY(A,,adp(1)/Z(1) ® R/7") is computed by the kernel of
HY(A,adp(1) ® R/7") — HY(A,adp(1)/Z(1) @ R/7") whichis HY (A, Z(1) @ R/#").

Let v be a class in the image of HY(A,ad p(1)®@ R/7") in H(A,adp(1)/Z(1) @ R/7"). Step
1, Step 2 and Step 3 in the proof of Lemma 3.1.6 in [1] then show that there exists a non-negative
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integer § such tha is unique etermine its restriction to 4,, an at it is indeed zero.
ger s such that 7'y is uniquely d d by A, and th deed zero. O

Remark. When p > 2 and p is not dihedral, this is proved in Lemma 6.9 in [81]. If p > 2 and
p is dihedral but not F*-dihedral, this is proved in Lemma 2.5.3 in [80].

Proposition 22. There exists an integer e > 0, independent of N and r, such that, given a class v in
H'(Fs,adp(1)®@ R/7") of order r(v) which maps to a non-trivial class in H*(Gal(Fs/Fy), ad p(1)®
R/7") (where N > Ny, if p = 2) of order (v), then there exists a place v of F such that

e Ny/gv=1modp?,
o p is unramified at v and p(¢(v)) has distinct eigenvalues,

o the trace of the ¢(v)-equivariant projection to a chosen eigenspace of V(¢(v)) C adp ® R/7" has
order r(v) —e.

Proof. Let vy denote the image of v in H'(Gal(Fs/Fy),adp(1) ® R/7"), and py denote
the image of vy in the A-invariant subspace of H'(Gal(Fs/Ky),adp(1) ® R/7") (where A =
Gal(KN/FN))

It suffices to prove that there is a non-negative integer e such that given a non-trivial class vy
in H'(Gal(Fs/Fy),ad(1) ® R/7"), then there is ¢ in Gal(Fs/Fy) such that p is unramfied at 6.
If an eigenvalue of p(a) is chosen, then the trace T'(vy) of the G-equivariant projection onto the
corresponding eigenspace has order at least r(v) — e.

Suppose that gy is trivial; in which case, vy defines a class in H'(A,adp(1) ® R/7"). If
it maps trivially to H*(A,adp(1)/Z(1) ® R/7"), then it defines an element of H'(A, Z(1) ®
R/7") and the assertion is proved in (a) of Lemma 3.2.9 of [1]. As vy has exact order 7(v), one
can choose an element 6 of Gal(Fs/Fy) such that vy(a) has order 7(v) in R/#". Thinking of
vy as a homomorphism from Gal(Fs/Fy) to Z(1) ® R/@", one may and will find an element
7 in ker vy such that p(76) has distinct eigenvalues. Choose one eigenvalue. If T' denotes the
map taking the trace of the G-equivariant projection onto the eigenspace for the chosen eigenvalue,
T(vn(70)) = T(vn(7)) + T(vn(c)) = T(vn(a)) has order r(v) by construction. The place v
corresponding to VG proves the assertion.

Suppose that gy is trivial but vy defines a non-trivial class in H'(A,ad p(1)/Z(1) ® R/7").
It follows from Lemma 21 that there exists a positive integer s such that 7'vy defines a class in
H'Y(A,Z(1) @ R/7") of order at least 7(v) —s. An argument similar to the one seen above proves
the assertion.

Suppose that py is non-trivial; this is proved by (c) of the proof of Lemma 32,9 in [1]. It
defines either a trivial, or a non-trivial, class in H'(Gal(Fs/Ky),adp(1)/Z(1) ® R/#"). 1f it
defines a trivial class, then py defines a class in H'(Gal(Fs/Ky), Z(1) ® R/7") and an argument
similar to the one seen above proves the assertion. We therefore assume that we have a non-trivial
class in H*(Gal(Fs/Ky),adp(1)/Z(1) ® R/m"). Since 7 annihilates H*(A,adp(1)/Z(1)) by
Lemma 21, it follows that gy has order at least 7(v) — 5. Thinking of g, as a homomorphism
py : Gal(Fs/Ky) — adp(1)/Z(1) ® R/w" whose image is Gal(Fs/ Fy)-invariant, it follows
from Lemma 20 that the image contains an element 6 in Gal(Fs/Fy) whose trace is of order at
least 7(v) — e. Indeed, we may find 6 in such a way that p(c) has distinct eigenvalues. Choose one
of the eigenvalues and let T denote the corresponding map as before. If T'(¢(c)) has order at least
r(v) — e, then we are done. If not, T'(v(76)) = T'(v(a)) + T'(v(7)) has order at least 7(v) — e. By
the Chebotarev density theorem, we find v such that ¢(v) defines 6 or 76. [
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Corollary 23. For every N when p > 2 and for every N > Ny, if p = 2, there exists a set Sq,n of
primes v as above such that

o |So.n| = qwhere ¢ = dimpHy,, (F,adp(1)) if p > 2 and ¢ = dimp Hy,, (F,adp(1)) — 2 if
p=2
o whenp > 2, Hy, (Fs,adp(1) ®g L/R) is a finite R-module bounded independently of N,
QN

while when p = 2,

HL. (Fs,adp(1) ©p Rjw') ~ HL. (Fs,adp(1) ® K/R)w] ~ (R/x')’

QN

holds for every s.

1Y, (Fo.adp @x /) ~ HY,(Fs,adp 9 K/R)[] ~ (R/7'Y
holds for every s, wherer = q—[F : Q] =1 (resp. r = 2¢ — [F : Q|+ 1) if p > 2 (resp. p = 2).

Proof. Repeatedly apply Lemma 12 (resp. Lemma 13) to aset of ¢ classes, of order 7, in Hy,, (F,ad p(1)®
R/7") which map to non-trivial classes in H'(Gal(Fs/Fy),adp® R/7")) it p > 2 (resp. p = 2).
In the light of Proposition 19, this proves that H., (F,adp ® K/R) is a finite R-module of
QN

order independent of N when p > 2; when p = 2, the second assertion further requires arguments
as in Lemma 13.

To deduce the third assertion, one observes that an analogue of Proposition 5 holds with p ®
R /7" in place of p and one therefore sees that rk HéQ’N (Fs,ad p®@pg R/7") (where by rk, we mean
the exponent, with respect to 7, of the cardinality of what follows) is computed by

rkHéé,N(FﬁdP(l) @rR/m")—1—[F:Q]+ Z l=g—[F:Q] -1

where [Sq n| = ¢ = dimp Hy,, (F,adp(1)) if p > 2, and

rkHéév(F, adp(1) Qg R/7") — 1 —[F : Q] + ZveSQ,N 2
= 2-1—[F:Q+2=2¢—[F:Q]+1
where |Sq | = ¢ = dimp H},, (F, adﬁ(l))—dimﬁrHél (F,adp(1)) = dimg Hy,, (F,adp(1))—
Q,N
2itp=2.0

5.3 Pacching and localised R = T

Definition. For a ring R and a prime ideal T, let RY denote the completion at the maximal ideal
of the localisation of R at I'.

The universal representation Gal(F/F) — GLy(Ry) specialises to a representation
pr : Gal(F/F) — GLy(R)

- - . » kerne 0 N N . - - the pre-imace
over R = F[[n]]. Let py,  denote the kernel of Ry, | — Ry, — R. Let p denote the pre-image
- L AD O O O
of pg, , in Ay by the map Ay = Ay — Ry .
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By slight abuse of notation, let AS’F (resp. RS’QFN) denote the completion of the localisation
of AY (resp. RY ) at p (resp. ”"EQ,N)' We let AS’QF = Ag’r[[Xl, X and, it p = 2, we

EQ,N
OV, ,00
furchermore let AZQ = Ay [X1, . X g42))]:

Proposition 24. Let 7 be an integer defined in Corollary 23. If p > 2 (resp. p = 2), then, for every N (resp.
forevery N > Ni), there is an isomorphism of R-mdoules between py, , /(pp+ NZEQ,N) and R™® X,
for some R-module Xs,,  with | Xs,, | bounded independently of N.

N

Proof. One can argue as in the proof of Corollary 5.7 in [90] that

HomR(l‘l’EQYN/(IJ’ + IJ'2EQ’N)7 K/R) = HéQﬂ,V(F’ adp ®R K/R)

as R-modules. Hence the assertion follows from Corollary 23. O

We may and will let the surjective Ag—algebra homomorphism

O,r o,r
AEQ REQN

be defined such that the r formal variables in AEQ map to fy,, - and define the maximal R-free
quotient of fuy;, /(4 p3 ). When p = 2, this furthermore induces

o,v,r or
AZQ RZQ#\!/VQvN'

By patching, we have AEQ ®A®@>RDA[[AQ]]—mOdule HEQ which is free over Ag. Let [R[[Aq]]®A] :
denote the completed localisation of A®g RP[[Aq]] at the pre-image of T in A& o R7[[Ag]]; sim-
i]ar]y define the comp]eted localisations Rg&r, HEDQ)F, and Ag&r at the respective images of T.

Ayl — RT — Tzzf C End(Hy)
Rg — Tg

if p > 2. We obtain a similar diagram with RS&F/VQ (resp. Ag&v’r) in place of RS&F (resp. Ag&r)
ifp =2

Proposition 25. Suppose the conditions in the preceding lemma. Suppose furthermore that, for every N if
P > 2, orevery N > Ny, when p = 2, there exists a set Sq n as in Corollary 23. Then HL isa faichful
RL-module. As a result, RS — TL is an isomorphism.

We need a few lemmas.

Lemma 26. ° Hg’f is a free module over [ RP[[Aq]]@A] "
° HEDL)F/] ~ HL.
° Agg — RS’QF (resp. Agév,r — RS(’DF /N q) is surjective.
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Proof of the lemma. The first assertion is standard. The second assertion can be proved as in
Lemma 15.

To prove the third, it suffices to establish that the relative tangent space vanish after ® gk K. By
Proposition 24, the patching argument ‘spends’ the free R-parc of pg /(10 + ,u%Q,N) in taking
the limit, and the relative tangent space is consequently a finite R-torsion module. This evidently
turns zero when @ r K. [J

Suppose that p = pr : Gal(F/F) — GLy(R) is

e reducible at every place in S, with distinct diagonal characters,

e crivial at every place in Sg,

e unramified at every place vin Sy and p(¢(v)) is a scalar in 1 + mg,

e unramified at every place vin Sy and p(¢(v)) has equal (resp. distinct) eigenvalues if p > 2
(resp. p = 2).

One can make a finite totally real soluble base change to ascertain p is ‘Steinberg’ at every
place in S, without further expenditure of effort (the image by p of a generator of the p-part of
the tame inertia subgroup at v in Sy, is unipotent, hence of finite p-power order; while the image
of the inertia subgroup at v is finite), but it is not possible to do so similarly at Sg. It is for this
reason we ‘prescribe’ I" with the property that pr 18 trivial at every p]ace in Sp— it is under these
assumptions that one can establish Af, and RE, rather than their quotients Ag/T" and Ry /T, satisfy
ring-theoretic properties one needs to prove a localised R = T theorem.

Lemma 27. Supposep > 2. If the characters ¢ ar S are distinct (resp. trivial), then for every minimal ideal
A\ of A, the quotient Ag T /N is O-flac and geometrically irreducible (resp. equidimensional) of dimension

0+ [F Q] +yp + AT

where T'= S, U Sg U S;. U Sa. Furthermore, when ¢ is trivial and L is sufficiently large,

o AST[1/p] is reqular, AZT is Cohen-Macaulay, and A5 /X is generically reduced.

e cvery minimal prime of AS™" /(/\, N) concains a unique minimal prime of AS" /A,

Remark. The same set of assertions hold with AS’QV’F in place of‘Ag’F when p = 2.

Proof. This follows the proof of Lemma 3.4 in [90], but we shall sketch a proof. Firstly, checking
properties of AS remain unchanged in passing to the faichful base change, as alluded at the end of
Section 5.1 will be left as an exercise for readers.

For every vin T, we let A” denote the quotient of R, as defined in Section with maximal ideal
m-. Let

O _ A0 8 O
AZPUEA - AZ[»®®V€SAAV ’

~

where, to recall, Agp denotes (®VESPAVD)®@[AMAP]]A and

~

-
LLUXR VGSLUSRAV
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Twisting by the inverse of an unramified character of D, which sends ¢(v) to the scalar value
of pr(¢(v)) at every v in Sy, gives rise to a map

¢ AY — AY.

Let I'¢ denote the image of I' = I'* by . We then have
o,r 0,re¢
Ay ~ Ay

We let ngpuEA denote ker(A§ — AgpuzA — R) and F;LUER = ker(Af — AY 5, —
®\,€SLU5RF) = ®V€S,‘U5Rm\?. It follows that I'¢ is identified with

~

ker(AF — A5, 5, ®(QQ) F) — R)

veESLUSR

: ’ ¢ ¢ N
and the latter is generated by FEPUEA and FZLUE,; Hence
AD,FC ~ AD,F< ® AD,FC ~ AD,FC ® AD
) - ZPUEA YiIUXg — EPUEA Y UXR

. . o,re o,re L
where, by slight abuse of notation, AE;:UEA (resp. Ay’ x,) denotes the completed localisation of

AEPUEA (resp. AELUZR) at F%PUEA (resp. FCELUEL). It suffices to understand ASP’B;A.

For each minimal prime A of A, we observe that (AgpuEA/A)FC is formally smooth over
(A/A)Y. This follows by computing the relative tangent space of (A/A)F — (AgﬁUEA/A)FC.
As a result, we may conclude that (AEPUEA/A)FC is a regular local ring.

We observe Spec [(AQ;BCEA/A)@AELUER] [1/p] is connected, hence so is Spec [AS:FC/A} [1/p];
on the other hand, Spec [Ag’FC/A] [1/p] is regular. Combining, we see that Spec [AS’FC/A} [1/p]

is a domain, and the first assertion follows from this. To see that Spec [Ag’FC/A] [1/p] is regular, it

suffices to show that Spec [AS;B;A/A] [1/p] isregular; in fact, it is enough to show Spec [Ag re /A} [1/p]

because of the observation that the map
¢
(A8 e/ ] 118l = [A2% /8] [1/2]

is faichfully flac and regular, and Theorem 32.2 in [63]. The regularity of Spec [AS,FC/A} [1/p]
follows from results in Section 2.3.

Since Ag is Cohen-Macaulay, it follows from Theorem 2.1.3 in [14] for example that the loc-
alisation of AS at T is Cohen-Macaulay. Since the morphism passing from the localisation to its
completion is regular, the completion Ag’r is Cohen-Macaulay.

It follows from results in Section 2.3 that Agp/(A, A) is generically reduced. By Lemma 3.3 in
9], this proves that AS /(A A) is generically reduced. Furthermore, it follows that the localisation
of AF at T is generically reduced. Since it is excellent, the completion AJT s generically reduced.

It follows from Lemma 3.3 in [9] that every prime of the localisation of Ag at I, minimal
amongst those containing A, contains a unique minimal prime of the localisation. To pass to the
completion, we make appeal to Proposition 1.6 in [90]. I
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Proof of the proposition. Suppose p > 2. Let A denote a minimal ideal of A. We observe that
the Ag&F/A—depth of HED(’I/A is greater than and equal to the ([R7[[Aq]]®A] : /)-depth of
Hg&F/A; by the freeness, the latter equals the Krull dimension of [RP[[Aq]]@A] : /A which is

(L4 [F: Q) +vs) +4T] ~ 14
= ¢+ [F: Q]+ + 4T
where T'= S, U Sp U Sp. U Sa.

It then follows from Lemma 27 that, when ( is distinc, HEDéF/A isnearly faichful over Ag&F/A.
By Lemma 2.2 in [84], HS&F/(A, A) is nearly faithful over Ag&r/(A, A) in the case when ( is trivial.
By Lemma 2.2 in [84] again, HEDéF/A is nearly faithful over Ag&F/A and therefore HEDK;F is nearly

o 0T : A e T 4O, _ 40T
faithful 0ve1Dz"llPQ . ngFLemma é.i in [84],;‘[EQ /] =~ Hs, is nearly faithful over AEQ /] ~ Ay
Note that Ay” =~ Ay /] =~ Ry /] =~ Ry,

On the other hand, one observes that p and the generators of | define a regular sequence of‘AgéF.
One then concludes, as in the proofs of Theorem 16 and Corollary 17 that R [1/p] ~ AT [1/p]
is reduced. On the other hand, RS(’DF o~ Ag&r is a noetherian local Cohen-Macaulay ring and p is
Rgf/]—regular, Ry, is p-torsion free and one concludes that R injects into Ry;[1/p] and therefore
that Ry, is reduced. Because of this, the nearly faithfulness of Hy, over RY: is promoted to the

faicthfulness.
The case when p = 2 follows similarly. O

Proposition 28. Any prime contained in an admissible prime I' in Ry, is pro-modular.

Proof. By definition, I" contains | = ker(r : Ry — T¥). It suffices to show that a minimal
prime A, contained in I, contains J. By Proposition 25, JRL = 0. Since Ry — R, where Ry ¢
denote the localisation of Ry at I, is faichfully flac, Ry, p = 0. It therefore follows that the ideal
J Ry, a of the localisation Ry, o is 0, and | C A. O

5.4 Finding I’

Lemma 29. Suppose that E is a quadratic extension of F in which not every place of F above p splits
completely; and suppose that p is E-dihedral. IfI' C Ry, is a prime as defined at the beginning of Section
5, then the lifting pr of p over Ry is not dihedral.

Proof. If pp were dihedral, it would be E-dihedral and it would follow from Lemma 2.2.1 in [80]
that every prime of F above p splits completely in E. This contradicts the assumption on E. [

When the quadratic extension E, from which p is induced, is totally real over F (e.g. E =
F* C F((,) whenp > 2), it is possible to allow every place of F above p to split completely in E.
In fact, it is possible to ascertain that pp is not E-dihedral at all (even if it is still dihedral). To this
end, let E be a totally real quadratic extension of F and let Eg denote the maximal pro-p-extension
of E unramified outside the places above S such that Gal(E/F) acts non-trivially on Gal(Es/E).

Suppose that E = (E N A(Q))F where A(Q) is the maximal abelian extension of Q.

Lemma 30. The Z,-rank tk Gal(Eg/E) of Gal(Es/E) satisfies tk Gal(Es/E) < [F : Q] — [F N
AQ) - Ql
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Proof. By assumption, E N A(Q) is a abelian, totally real quadratic extension of F' N A(Q).
Hence the Z-rank of (E N A(Q))* is 2[F N A(Q) : Q] — 1, and the subgroup I' of the units
(ENA(Q))* onwhich Gal((ENA(Q))/(FNA(Q))) acts non-trivially has Z-rank 2| FNA(Q) :
Q-1—-([FNAQ):Q]—1)=[FNAQ) : Q] It follows from the Leopoldt ‘conjecture’ for
abelian extensions of Q that the closure T of T in the p-adic completion ﬁz of O where Gal(L/F)
acts non-trivially, has rank at least [F N A(Q) : Q]. We then deduce that tk Gal(Es/E) =

tk @, )T < [F:Q] - [FNAQ).O
Lemma 31. If I be an ideal of Ry, such that
o the determinanc of py : Gal(F/F) — Gla(Rs) — GLy(Rs/1) is of finite order,
o the Krull dimension dim Ry /1 > ([F : Q] — [FNA(Q) : Q]) + 1,
then py is not E-dihedral for any totally real quadratic extension E of F satisfying E = (E N A(Q)) F.

Proof. If py, whose determinant is of finite order, were E-dihedral, then p would be E-dihedral
and we might think of @[[Gal(Es/E)]] as the universal ring for E-dihedral deformations of the
E-dihedral p whose determinant equals the Teichmuller lift of det p; the natural quotient Ry, —
Ry, /I would factor as a composite Ry, — O[[Gal(Es/E)]] — Rx/I of surjections, but this is
impossible as dim Ry /I > ([F: Q] — [FNA(Q) : Q]) + 1 >tk Gal(Es/E) + 1. O

Proposition 32. Suppose that F satisfies the following conditions:

o [F,:Q,] > 4|Sg| for every place v of F above p,

o the degree [F N A(Q) : Q] of the maximal abelian subextension of F over Q is strictly greater than
4| Sg|.

Then Ry, contains an admissible prime.

Proof. We make appeal to Lemma 1.9 in [90]. The determinant of the universal Galois repres-
entation py : Gal(F/F) — GLy(Ry) defines a map A(p) — A — Ry and let Ay, denote the
ideal of Ry; generated by the image.

Let S be the quotient Ry;/(A, ], Ayy), where | denotes the kernel of Ry, — T;. Let Xy, denote a
family of countably many ideals in Ry,. If there exists a non-negative integer N such that dim § >
N and dim §/Is < N holds for the image I of every ideal I in Xy, then it follows that there
exists a co-height one prime I' of Ry; that does not contain any I in X5, Indeed a such prime will
satisfies all the conditions for it to be admissible except that pr is trivial at the places in Sg.

We define N = [F : Q] — 4|Sg| (this is positive by the first assumption). For Xy, we choose

o the image of the ideal I, of A, for every place v above p, corresponding to the subset of two
identical characters of Ay; by assumption,

dim S/L < (dimA—(1+1+~;)—[F:Q)=[F:Q - [F:Q] <N

holds,
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o theideal I = ker(Ry — O[[Gal(Es/E)]]) when p is E-dihedral for a totally real quadratic
extension E over F (in which every place of F above p may, or may not, split completely in
E); by assumption and Lemma 30,

dim §/I < dimF[[Gal(Es/E)|]] < [F: Q] - [FNAQ): Q] < N
holds.

Let m$ C Ry, for every place v in Sg, denotes the image of the maximal ideal m2¢ of RP/15¢
under RY/IP¢ — RY — Ry. Let I denote the ideal of Ry generated by {m$}. It then follows
from Theorem 15.1 in [63] that dim S/Is > dim § — 4|Sg| > [F : Q] — 4|Sg| = N. Lemma 1.9
in [90] then finds an admissible prime. O

Finally, we prove that, given the assumption on F at the beginning of the section, there cannot
possibly be a component of Ry; (i.e., a minimal ideal) that is not pro-modular.

Corollary 33. Let F be as assumed in the proposition. Suppose that |Sg| > 1. Every prime of Ry is
pro-modular.

Proof. Let A (resp. A™) denote a set of minimal primes of Ry, which are pro-modular (resp. not
pro-modular), and suppose furthermore that A and A™ are disjoint and their union equals all the
minimal primes of Ry,. We know A is not empty by the existence of a admissible prime above, and
it suffices to prove that A7 is empty. Suppose that A7 is not empty. It would then follows that
there exist A in A, and A7 in A™ such that

dlng/(A,Aﬁ) Z C(RE) Z [F . Q} —|—’)’F— 2|SR| — 1.

Since A is pro-modular, it contains J. Asaresult, Ry /(A, A7, N, Ay) isaquotientof Ry /(A, ], Ay).

Since
dim Ry /(D A7 A, As) > [F: Q4+, —2|Sg| —1— (14+1+~,) = [F: Q] —2|Sp| -3 > N

for N in the proof of Proposition 32, it then follows that there would be an admissible prime of
Ry, containing, in particular, A™. By Proposition 28, A™ would then be pro-modular, and this
contradicts the assumption about A™. [J

55 A quick reminder about pseudo—representation theory

A pseudo-representation D : E — R (over R) of dimension 7 is a polynomial law of degree 7.

A pseudo-representation D @ E — R is said to be of Cayley-Hamilton type (CH-type for
short) if every element of E satisfies the characteristic polynomial of D. Let T'(D) denote the
trace of D.

A pseudo-representation D : E — R is said to be of Azumaya type (A-type for short) if
there exists a projective R of finite rank V over R such that it factors the pseudo-representation

det : End(V) — R. If a pseudu-representation is A-type, it is of CH type.

A pseudo-representation D : E — R is said to be a pseudo-representation of I' over R if
E = R[I']. A pseudo-representation R[['] — R of I over R is said to be of CH-type (resp.
A-type) if there exist

36



e afiitely generated R-module E (resp. End(V) for a projective R-module of finite rank V)
which comes equipped with a pseudo-representation D : E — R (resp. det : End(V) — R)

o p:I' = EX whichgivesrisetop : R[I'] = E
such that R[G] — R is given by
R % EZR
(resp. R[] & End(V) MR
An algebra E over R is a generalised matrix algebra (GMA for short) if it comes equipped with
a data of idempotents, or a GMA-structure over R, as defined in [10]. If E is a GMA, the GMA

-structure defines a trace function we shall denote by T(E) : E — R. The following is stated as
Lemma 3.1.3 of [92]:

Proposition 34. Given a GMA E over R, there is a CH pseudo-representation D = D(E) : E — R
with trace T(D) = T(E).

Given a GMA-algebra E over R of type (1,1), there is an isomorphism of R-modules E =~
A B
C D

It(D: E— R,p:I'— E*)isa CH pseudo-representation of I over R and if E is a GMA
of type (1,1) over R, then pre-composing with p : R[['] — E defines a psedo-representation
(A:T R D:T—-RT=A+D:T"'—- R X=BC:T xI' = R)asdefined in [97].

Let Dy : F[I'] — F be a pseudo-representation of I' over F. A pseudo-representation (D :
E — R,p: T — E*) over alocal ring R with residue field F is a pseudo-deformation of Dy if
D®pF ~ Dp.

Proposition 35. Let p : I' — GL(Vg) ~ GLy(F) be a representation of I" over F. Suppose that p is
multiplicicy-free and lec Dg(p) : F[I'] — F denote the associated pseudo-representation of I' over F. If
(D: E— R,p:T' — E*)isaCH pseudo-deformation of Dg(p) over a noetherian local Henselian ring
R with residuc field F, then E is a GMA algebra over R and D(E) = D.

where A~ R, D ~ R and B and C are finite R-algebras.

Proof. This is stated as Theorem 3.2.2 in [92]. O

As before, let € be the category of complete noetherian local @-algebras with residue field
isomorphic to F. Let & denote the universal ring for pseudo-deformations R[I'}] — R of Dr(p)
over €. 'There exists (Theorem 2.2.9 in [92]) a universal CH-pseudo-deformations (Dyp : Ep —
P,pp : I' = E}) of Dr(p) over P. The CH-algebra Ep is given as the ‘maximal CH quotient of
S[I'] and factors the universal pseudo-deformation P[I'] — P of Dr(p) as

P25 Ey 2% 9

The local conditions prescribed by a deformation data ¥ single out CH-pseudo-deformations
satisfying conditions (Section 2.3 in [92]), which we shall refer to as CH pseudo-deformations of
type 2, and there exists a universal CH-pseudo-deformations of Dr(p) of type ¥ over the quotient
Py, of P (Theorem 2.5.3 in [92]).

We define a pseudo-deformation D : R[['] — R of Dg(p) to be of type X if the CH-module
Ep ®p R over R is of type X. In this optic, the complete noetherian local ring Ps; represents
(Theorem 2.5.5 in [92]) the pseudo-deformations of Dg(p) of type 2.
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5.6 pisinduced from a character of a CM field in which every place of F above
p splits completely

We now suppose that F satisfies the following conditions (whether p > 2 or p = 2):
e [iseven,
e pis irreducible,

e [ is abelian when restricted to Gal(F/E) for a quadratic imaginary extension E of F in
which every place v of F above p splits completely.

We may suppose that p is induced from a character 7 : Gal(F/E) — F*. In particular, the
restriction of p to Gal(Fs/ E) is the direct sum of 7 and its conjugate character 7,.

Suppose that the image of p is a dihedral group Dy, of order 2n. An abelian subgroup of Dy,
of index 2 is either a cyclic subgroup of order n, or one of the two dihedral groups of order n. It
therefore follows that, unless,n = 2 or 4, there is a unique index 2 abelian subgroup, a cyc]ic group
C, of order n generated by the ‘roration’.

In the case of Dg (resp. Dy), it is either Cy or one of the two dihedral groups Dy >~ Gy X
Gy of order 4 (resp. one of the three abelian group isomorphic to Gy). However, by Dickson’s
classification of subgroups of PGLy (R)) (Theorem 2.47 in [26] for example), the image of p can be
Dg or Dy, only when p > 2.

In conclusion, unless p > 2 and the image of p is isomorphic to Dy or Ds, the quadratic (ima-
ginary) field extension E from which p is induced is unique.

We now recall a theory of CM forms in a manner similar to the one in Section 3.

Let F* bean imaginary quadratic extension in which every place of F above p splits Completely.
Let A denote the pro-p completion of the Galois group of the maximal abelian pro-p extension of
F* unramified outside the set of places in F* lying above those in S that do not ramify in F*.
Every place v of F above p is assumed to split completely in F* and we choose one of the two places
of F* above v. This defines an injection of A into the group algebra Ag = O[[Ag]] of Z,-rank
14+ [F: Q]+~

There is a ‘universal’ character
Gal(F/FT) — Ag — A},

unramified outside the set of places in F* lying above those in S that do not ramify in F*, and ics

induction to Gal(F/F) defines
Ga](F/F) — AS — GLQ(As)

unramified outside S and locally split at every place of F above p.

As in Section 3, for an open compact subgroup U of G(A*), let S(U, L/ ) denote the O-
module of cusp forms (defined on a totally definite quaternion algebra over F) of trivial weight
and level U on G(A). Let U be an open compact subgroup of G(A) which is maximal com-
pact hyperspecial at v outside § and reduces mod r-th power of 7, to the upper-triangular uni-
potent matrices at v in S,. Let eS(U, L/ ) denote the direct limit of eS(UV, L/ 0) over r. Let
C(As, L/0) denote the space of continuous functions on Ag with values in L/ 0.
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Hida proves that the construction ¢ — 0(¢) associating a Hecke character ¢ : F¥*\AZX, —
C~ @P to the (g-expansion of a) O-series 0(¢) can be p-adically interpolated to a correspondence

C(As, L) 6) — eS(U, L) 6)

associating an element ¢ in C(Ag, L/0) to a p-ordinary normalised eigenform 8(¢), where U is
defined such that if v is a finite place dividing cither the relative conductor of ¢ in F or the relative
discriminant of F* over F, then U, C GLy(O,) is the pre-image, by GLy(OF,) — GLo(F,) of
the subgroup of upper triangular matrices.

Let S(As, U, L/ 0) denote the image of the correspondence ineS(U, L/0), and let S(Ag, U, O)
denote the Pontryagin dual S(Ag, U, L/O)Y of S(As, U, L/0). Let

T(As, U, O)n C End(S(As, U, 6))

denote the corresponding p-ordinary Hecke Ag-algebra as defined in Section 3, localised at the
maximal ideal m corresponding to p. It follows that there exists a F*-dihedral representation

pas : Gal(F/F) — GlLy(T(As, U, O)y)
such that pa is split at v in S,; and there is a Ag-algebra homomorphism, ‘a Ag-adic forn,
T(As, U, ﬁ)m - AS

sending Ty, (resp. S,) to trpag(¢(v)) (resp. (Np/gv) 'detpag(¢(v))) for every place v not lying

in S. By construction, this is an isomorphism.

If an imaginary quadratic extension FT as above has relative discriminanc D defined as the
product of places in a subset SP of (distinct) places in Sg U Sp and ¢ is a character of Ft of
conductor a product of (distinct) places in (Sg U S) — S?, then 6(¢) generates (via the Jacquet-
Langlands correspondence) the subspace €Sy (Ag, Us,, L/0) of cusp forms with complex multi-
plication by F* in eSx(Us, L/0) as defined in Section 3 (whether  is trivial or not). The corres-
poding Hecke algebra Tx(Ag) C End(eSs(As, Us, L/ 0)},) defines an ‘irreducible component’
Spec Tx:(Ag) of Spec T..

In terms of Galois representations, we have
T(AS, U, ﬁ)m ®As Rg ~ TZ(AS)

Proposition 36. Suppose that F satisfies the first condition in Proposition 32. Let py; denote the universal
deformation of p over Ry..

o [fpx isnot dihedral, then there exists an admissible prime I' of Ry, such that the surjection Ry, — T,
gives rise to an isomorphism
r r
Ry, >~ Ty,.

o [f py is dihedral, then Ry, is pro-modular.

o Lvery prime of Ry, is pro-modular.
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Proof. Suppose that ps. : Gal(F/F) — GLy(Ryx) is not dihedral. In particular, p is not abelian
when restricted to any one A of the possible abelian subgroups of index 2 in the image of p— as
discussed at the beginning of Section 5.6, A is unique (= Gal(F/E)), unless p > 2 and the image
of p is isomorphic to Dy or Dy in which case there are three possible index subgroups).

By assumption, there exists a p-ordinary Hilbert modular eigenform IT whose associated Galois
representation pry is of type 2 and defines a deformation of p. Raising the level at a finite place v
of F with Np/g = 1 mod p at which p is trivial (e.g. a place in Sg prescribed in X)) if necessary,
we may assume furthermore that pry is not dihedral of type X. This is possible because of the
observation that the corresponding Hecke modules (denoted earlier by Hy), in the case where ‘¢’
is distinct and in the case where it is trivial, are congruent, and of the Deligne-Serre’s Lemma 6.11
in [33]. Granted, there is a A-adic form

T2—>R

passing through II, over the integral closure R (whose dimension equal to dim T¥;) of a finite
extension of the field of fractions of A. In particular, its associated representation p = pa :
Gal(F/F) — GLy(R)) is not dihedral.

Following Section 5.5, p gives rise to a free-module V of rank 2 over R such that (D = det :
End(V) — R,p : Gal(F/F) — End(V)* = GL(V)) defines a pseudo-deformartion of the
pseudo-representation Dy(p) of Gal(F/F) over F. It follows from Proposition 35 that End(V) is

isomorphic to
A B
(¢ »)

for some finitely generated R-modules A, B, C and D, and A and D are both isomorphic to R;
and we may write p : Gal(F/F) — GL(V) as

A(o) B(o)

. (c<c> D(s)
and X (o, 7) = B(c)C(7). Since p is irreducible, the map Gal(F/F) acts non-trivially on Band C.
It follows from the assumption— p is not dihedral- that for any possible index 2 abelian subgroup
of Gal(F/F), which we shall again denote by A by slight abuse of notation, the induced map on

A also acts non-trivial on B and C simultaneously (since A is a normal subgroup of Gal(F/F)).
Fixing A, it follows that there exist 7 and s in A such that £ = X(r,s) is non-zero in R; and, for

every element 6 in A,
A(o)  X(o,$)/8
° (X(r,cs) D(s)

defines an irreducible (in particular, non-abelian) representation of A over RY = R[1/2]. Let
B* = BY : A — R* denote the non-zero map sending 6 to X(a,s)/€. It follows, since R is a
noctherian domain, that there is a height one prime ' of R* that does not contain the image of BY,
Unless dim R < 1, there are infinitely many height one primes in RY, and only finitely many of
them contain the image of BY. It therefore follows that one can find a such height one prime ' in
R* that does not contain the image of BX for every possible A. Let $* denote R*/T'Y; the induced
map BY : A — S¥ remains non-zero (for every A). Since dim S* <dimR*—1=dimR-1
(see [63], p.30), we may repeat the process to assume that S* is a Dedekind domain (by replacing
it by the integral closure in its field of fractions), or indeed a DVR (by localising it further at a
generator of the ideal of RY where BY vanishes).
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As in the proof of Lemma 2.13 in [81], it is then possible to construct a non-zero cocycle B:
Gal(F/F) — T which remains non-zero when restricted to any index 2 subgroup A. Since p is
(absolutely) irreducible, the centraliser of g is IF; and it follows that if Bwere a coboundary, it would
be (a scalar multiple of) the trivial cocycle by conjugation. Since B is not trivial by definition, it is
not a coboundary. Corresponding to the cocyle, there exists an infinitesimal deformation

Pei : Gal(F/F) — GLy(Fle))

of p of type ¥ over the ring F[e] of dual numbers over F which is not dihedral- in particular, for
every possible index 2 subgroup A, its restriction to A is a non-trivial extension of the pair of
conjugate constituents in the restriction of p at A.

The argument in the proof of Proposition 32 now works verbatim, with the kernel of Ry, —
Tx, — Fle] corresponding to Prq in place of Ry, to find a co-height one prime I' in Ry, whose

corresponding representation pr : Gal(F/F) — GLy(R/T) specialises to Pr[q- Since pgpg is not
dihedral, one concludes immediately that pr is not dihedral. The isomorphism now follows from
Theorem 25.

Suppose that py is FT-dihedral for some quadratic extension F* of F. By Lemma 31 and
dim Ry /Ay, > dim Ty /Ay > dim A/Ay = dim Ay =1+ [F : Q], we may assume F*is CM,
and furthermore assume, by the reducibility of py; every place v of F that v splits completely in F*.
It then follows that there exists a ‘specialisation’ homomorphism Ag — Ry. By composition, we
have Tx,(Ag) — As — Ry, proving the pro-modularity. Indeed, it follows that Tx.(Ag) >~ Ry in
this case.

An argument similar to the one in Corollary 33 proves that every prime of Ry is pro-modular.

O

Remark. Let K denote the fixed field of F by the kernel of ad . Let Gg denote the maximal
abelian quotient of the Galois group of the maximal extension Ky of K unramified outside § and
let T's = Gs/Gk. Via the exact sequence

0 — Gal(Ks/K) — Gal(Ks/F) — Gal(K/F) — 0,

the F,-vector space I'g comes equipped with action of Gal( K/ F) by conjugation. Let I(,) denote
the representation of Gal(Fg/F) given by the induction of the character /7, : Gal(Fs/E) —
F*. The work [35] proves that if Homp(ca(k/m)](L's; I(X,)) is non-zero (resp. zero), then py is
non-dihedral (resp. dihedral); and that unless p is totally odd (which occurs only when p =
in our setting), Homgjcai(x /) (I's, 1(X,)) is non-zero (see Remark 3.7 and Remark 3.12 in [35]).
As remarked in Remark 3.19 in [35], the work [20] also an alternative approach (albeit in a more
specific setting, e.g. I = Q) to the problem of characterising exactly when p-ordinary deformation
rings are dihedral or not.

6 pis reducible and non-trivial

6.1 Pseudo-deformation of type X

Let S be a finite set of places of F. Suppose that it is a disjoint union of sets Sy, Sg, Sp., Sa, S as
carlier defined. Suppose that

« X is unramified outside S,
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« X is ramified at every infinite place of F, i.e. p is totally odd,
« X is trivial ac S, U Sp U Sy,
« X is unramified at v in S4 and X(¢(v)) is trivial (resp. non-trivial) if p > 2 (resp. p = 2).

As a result of these conditions,  is, in particular, non-trivial.

LetI' = Gal(Fs/F). Let X v denote the deformation data (SU Sq v, T', { L, }), where Sq
is a set of places v of F such that Ng/g(v) = 1 mod pV at which X is unramified.

Aclassvin Ext]}[F] (%, 1) gives rise to a totally odd representation p(v) : Gal(F/F) — GLay(F)
unramified outside S, whose semi-simplificationisp =1 B .

Let Dg(p) denote the pseudo-representation F[I'] — F associated to the representation p =
lax: T — GLy(F).

Let Ps; denote the universal ring for pseudo-deformations of Dg(p) of type X as defined in
Section 5.5.

6.2 Modular pseudo—deformations

We follow the notation of Section 3. Let Mg,y be a maximal ideal of eTx, \ (Us,, ) containing
T, — (1 +x(¢(v))) for evert vnot lying in S and U, — 1 for vin S, which gives rise to a pseudo-
representation

De(p)on : F[T] = eTxy y(Usg y) /Moy = F
of GMA-type.

Lemma 37. Then there exists a pseudo-deformation

DQ,N : (eTEQ,N(UZQ,N)HIQ,N) [F] - eTEQ,N(UEQ,N>mQ,N
of type ¥ such that T(Dq,n) = T for every v not lying in S.

As in Section 3, if Ty,  denotes the image of eTx,  (Us, y)mgy in Hs,, y(Us, ), then the

lemma gives rise to a homomorphism

Poon = Togn-

6.3 Reducible subspaces and irreducible coverings

Let SDEA denote the maximal reducible quotient of Ps.. This is characterised by the property that
if D : R[I'] — R is a pseudo-deformation of Dg(p) of type 3, then it gives rise to a unique map
Ps, — R; and this map factors through @5, — Py, A if and only if D is reducible.

Since X is non-trivial, p is multiplicity-free. It therefore follows that the universal CH-module

A(s) B(o)

co) o)
where A(a) (resp. D(a)) reduces, modulo the maximal ideal of Py, to 1 (resp. X). The ideal
ker(®Ps;, — Ps a) is generated by X(o,7) = B(0) C(7) as 6 and 7 generated over I'. Since @Ps; is
noetherian, ker(Ps; — Ps; o) is generated by finitely many elements {€}; and {Spec P[]}

Ey; over Py is GMA of type (1, 1); and we may assume I' — E; to be of the form 6 — (

defines an open covering of the complement (the ‘irreducible locus’) Spec Ps; — Spec Ps; A. For
cach €, there exist 7,5 in I" such that X(r,s) = ¥; one easily checks that the map

5 ( A(o) X(c,s)/ﬁ)
X(r,a)  D(o)
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defines a homomorphism, i.e. a representation, over P[] with X(r, 6) X (5,5)/L = X(r,s) =
€. It therefore follows that Ex Qg Ps[L7Y is of Azumaya-type. As in the proof of Proposition
36, knowing that 6 +— X(a,s)/€ is non-zero, one may conclude that there is a prime in Px[L7]
(with a DVR quotient) for which the map remains non-zero upon specialising. As in the proof of
Lemma 2.13 in [81], it is possible to define a cocycle B : I' — Py, [53_1] — [F. Note that chis is not

0

the universality of @5 a. The cocycle therefore defines a non-zero class @ in Ext* (%, 1) over F.

?) would be conjugated to ((1) ;) and this would contradict

a coboundary as if it were, <

Fixing €, we let @5 v denote Ps[L7Y. Let RS(V) denote the universal ring for deformations
of p(v) of type ¥ and Rg(v)’lj denote the universal ring for T-framed deformations of p(v) of type
2. There is a natural map,

g)g — R;(v)

given by the pseudo-deformation det : Rg(\)) ] — RS(V),
Let Rzpfvv) denote Rg(v) Rgps, Ps;v. By definition, its spectrum is the pull-pack:

Spec Rgfvv) —  Spec Ps v

L J
Spec Rzp(v) —  Spec Ps,.

By Proposition 4.2.2 in [92], any specia]isaticm of‘Rg(Vv) gives rise to an irreducible deformation

of p(v) of Gal(Fs/F) of type .

Lemma 38. Py, v is isomorphic to Rgfvv) :

Proof. It suffices to construct a section Rzﬁfvv) — Ps. v of the natural homomorphism P, v —
Rg(v). It follows from the argument above that Ey; ®g,, Ps v defines a lifting I' — GLy(P5 v)
for p(v) of type X over Py, . Its conjugacy class therefore gives rise to a homomorphism Rg(v) —
Ps. v by the universal property of RS(V); indeed, this is an Ps-algebra homomorphism. This gives
rise, by Stacks Project Lemma 10.9.7 for example, to an Ps-algebra homomorphism Rg(vv) — Pyy
we seek. [

6.4 Reducible non-split p and cuspidal eigenforms
Letp : Gal(F/F) — GLy(F) be a continuous representation and suppose that its semi-simplification,

up to twists, is

1

0 ;) for a totally odd character ¥. Let x denote the Techmuller lifting of y.
Let § denote the union of §,, S and the set of places in F at which x is ramified. Let Us

denote the open compact subgroup of GLa (A7) such that, for every vnotin S, Us N GLy(F,) =

GLy(OF,); for every vin § — S, Us N GLy(F,) defines the subgroup of matrices in GLy(O,)

; T ; and for vin S,
Us N GLy(F,) = GLao(F,). Let Ug} denote the subgroup of matrices in U such that, for every
vin S, US[r] N GLy(F,) defines the subgroup of matrices in GLy (O, ) which reduce modulo

to the unipotent matrices. Let S USM, 0) denote the 0-module of cusp forms for Resp/gGLy of

that reduce mod the conductor ¢,(x) at v to the matrices of the form
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parallel weight 2 and of level Ug}. Let Ty( USM, O) C End(Sy( USM, 0')) denote the Hecke algebra

generated by 7, for vnot lyingin S and U, = [Ug} <(1) 7?) Ug]] and S, = [Ug] (76" 7?) US[r]]

for vin §,.

Letting e denote the Hida idempotent, e Ty USW, O') defines an inverse system (with respect to
r) and we let eT5( Us, €) denote the limit.

The diamond operator () : (Op/p")* — Tg(Ug], 0)*, as normalised in [50], extends to
(Vi (Op @32,)° [Cr — Ty(Us, 6)%, whilev — U, € To(U!, 6) extends to U : [, F* —
T5(Us, ©). The ‘Hida' nearly ordinary Hecke algebra e T3 ( Uy, €) is a finite, torsion-free, algebra
over A = A,®@A(p) via Ula, X { )|ag) (see [50] and [49]). There exists a Galois representation

ps: Gal(F/F) — Gly(eTy(Us, 0))

which is unramified outside S, trpg(¢(v)) = T for every v not lying in S, det ps|ap) = Xo( ) ap)
and, for every place v above p,

(% o)
psia. 0 xp{ Ma (Ula)™" )"

Proposition 39. Suppose that the p-adic L-function L,(F,—1,x[x,]™") € O (where [X,] denotes the
Teichmuller lifting of the mod p cyclotomic character X,) is divisible by \. Then there exists a non-Eisenstein
maximal ideal mg C eTy(Us, O) such tha, if p,, : Gal(Fs/F) — GLy(F) denote the corresponding

Galois representation,
« My contains T, — (1 + x(¢(v))) for evere v not lying in S and U, — 1 for vin S,

» Mg contains the kernel of x[x,] 7" : A(p) — F,

1 %
* Py hencep, is of the form < 0 Y) with non-zero *.

Proof. This is proved in Proposition 3.18 of [81] following Ribet’s trick. [J

6.5 Pro-modularity of irreducible pseudo-deformations over Ps; v when p is a
non-split extension of ¥ of non-CM type

Fix a class v in Extﬂl;m] (X, 1) and suppose that it is non-zero. Suppose that p(v) is not a (reducible)
representation that is induced from an imaginary extension E of F in which every place of F
above p splits completely. This is similar to the setting considered in 5.1. The assumption amounts
to demanding that p(v) is not induced from a character 7 of Gal(F/ E) such that the character 7,,
obtained by conjugating 7 by the order 2 generator ¢ of Gal(E/F), is isomorphic to 7.

Let I' be a co-height one prime of R;EVV) and let R = Rp denote the normal closure ofR;(VV)/F
in the field K = Kr of fractions. The universal deformation of p(v) of type ¥ gives rise to

and we assume
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« p ®p K is irreducible,
« det p is of finite order,

« if p > 2, pis either non-dihedral or it is dihedral but not FT-dihedral for the quadraric
extension F* of F in F((,); while if p = 2, p is not dihedral,

* py, at v above p, is reducible with distinct diagonal characters on the diagonal,
« p, is trivial at every place v in Sk,
« p(v) is Eisenstein modular, i.e. there exists m such that p(v) ~ p,,.

Let Hy,, , and Ty, , denote the Hecke module and Hecke algebra as defined earlier completed
at the pre-image mgn C eTx, ,(Us, ) (an Eisenstein maximal ideal) of m. Let Hy, v =
Hs, RN Psgyw and T v = Ty, Bson Pron.v:

There is a surjection

Psonv = Tsoyv CEnd(Hs, \v)

N
and a natural map
p(v) p(v)
‘@ZQ,N RZ QN REpQ NV
defined by the pseudo-representation associated to the universal deformation of type X over RE( )V
Definition. We say that a prime ideal of Py, v is pro-modular if it contains ker(Py v — Ty v).

We say that a prime ideal OFRP( ) is pro-modular if its contraction in R v is pro-modular.

We have
AD

EQ,\I

p(v),0 O O
EQN Ry ov «—— Psonv — Ts,,v C End( ZONV)

RP(V) — sy — TIxny

The representation p define coheight one primes in ps,, | C Rgg) v and in p C Ag. Since

I' is pro-modular, there also is a co-height one prime in TEQ . that pulls back to I'. As in earlier
5(v),0,T AEI,F O gor

sections, let Ry, N S 2 S denote the completed localisations with respect to

prlmes corr69p0nd1ng to I if p = 2, we also have RP V) E v/Va.n and the completed localisation
RPV

EQ N>

th(, @EO’V v/V&N al’ld @E)VV/VQN

It follows from Corollary 23 with R V in place of Ry, that we have

V /V& ), N with respect to the image of P, as bcforc In light of Lemma 38, we similarly

A r
(A®sR[Aq]])
AT = AN, X)) — REVST — @gfv — Ty'y C End(
RIDT . — T,
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ifp > 2. Asimilar diagram holds with REES)V’D’F/VQ (resp. @S&FV/VQ, resp. AS&V,F = Ag’r[[Xl, o

in place of Rgg),gm’r (resp. (PSS:V, resp. Ag&r).
Lemma 40. . ED;}?V is a free module over [RD [[AQ]]@)A} :
. EDéljv/kcr(A ® R7A] = A) ~ Hy, ¢

° Agf Rp (resp ASZ)V’F R;O /VQ) is surjective (resp. if p = 2).
Proof. This can be proved exactly as in Lemma 26. [

)

Proposition 41. The map @ED&ITV — Rzﬁg)v’m r is an isomorphism.
Proof. 'This follows immediately from Lemma 38. [

Theorem 42. H V is a faichful module over f}) V (resp. ‘@2 o, V/VQ) and the surjection ‘@E v —
2§,v (resp. *@EQ,V/VQ — TEva) is an uomorphlsm ifp>2@esp. ifp=2).
Proof. We assume p > 2. Lemma 27 continues to hold in the reducible case, except that the

irreducibility of pr, which we assume. Let A be a minimal prime of A.
We firstly observe that, by Lemma 40 and Proposition 41, one may think of Spec @EDL’)FV/A as

a closed subscheme of Spec Ag(,jl“:
Spec @g(fv/ﬁ ~ Spec REP((VVD "IN < Spec Ay’ F/A

The '@Eo v/ O-depth of HE V/A is greater than and equal to the depth of HE V/A as a
module over [RDHAQH@{)A} /A. Since HZQ,V/A is free over [RDHAQH@A} /A, the lacter

equals

dim [RI[[AQ)J@A]" /A
q+1+[F:Q]+~,+4T|
dlmAEO/A

dim RP I = dim PTG /A

v

As a result, one deduces that the support of Hzé V/A is a union of irreducible components of

Spec @ED(’}?V/A.
When ¢ is distinct, Spec Ag:}F/A is irreducible and it therefore follows that

. o, o,
buppmgQﬁv/AHzQ,v/A @zo V/A Azo /A
and that HZD&{V /A is also a nearly faithful module over ‘@EDL}TV /A (and over AgQ /D).

From now onwards, suppose that ( is trivial. The repeated application of Lemma 2.2 in [84]
then proves (the case € is trivial) that

. o, 07 _40Or
buppmggv/AHEQ,v/A = @EQ7V/A = AEQ /A

and that HED(;F/A is a nearly faichful @géfv/ﬁ—module. It also follows that p is (@g;:v/A—regular
since p is Ag&F/A—regular (Proposition 27 proves that AS&F/A is Cohen-Macaulay). On the other
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hand, AS&F/A[l/p] is reduced and therefore g)géljv/A[l/P] is reduced, and the p-torsion freenes
of ‘@EDQITV/A proves that ‘@EDL}?V/A is reduced.

Applying Lemma 18 to Hg(va which is finitely generated with lejéljv [1/p] taithtul and Cohen-
Macaulay over £, one concludes that (AZT /)[1/p] ~ (PSG/N[1/p] = (REVS /D[1/p)
is reduced. As @gv ~ @ED(;I:V/] is p-torsion free (since p in ‘@ED(;FV remains regular mod /, i.c. p is
P§, g-regular), Py, ~ RSEVV)’F are reduced. This concludes a proof of the first set of assertions.

To prove the second assertion, one observes that Lemma 2.2 in [84] proves Hy, ¢ ~ HED;V/] is
nearly faithful over ;¢ ~ @ED’QF’v/] but, as P, ¢ is reduced, Hy, ¢ is indeed faithful over £ ¢.

The isomorphism Rgfvv),l“ ~ T;v holds because its kernel is zero by the faithfulness.
The case when p = 2 follows similarly. [

Proposition 43. Suppose that F satisfies the conditions of Proposition 32. Then Py, v contains an admissible
prime I" and
pMT o pl . T
Ryg =Py x=Tvy
holds. Every prime of Ps; v is pro-modular.

Proof Let v be a non-zero co- cycle associated to the universal pseudo deformation over Ps; V-

p(v)

all the conditions for it to be admissible except the irreducibility of the associated representation
r : Gal(Fs/F) — GLa(R) where R is isomorphic to F[[m]]. However, we may, and will, easily

ascertain I" does not contain £ in Py, v and the irreducibility of pr follows from R being a domain.
p(v),I

We may argue as in Proposition 32 and Proposition 36 to find a prime I in RE v ~ Py, v satistying

The isomorphism RP
i

a Tg,v follows as in the Proof of Proposition 25, while the isomorphism

~ Pf g s Propos1tion 41. The second assertion follows exactly as in Corollary 33. I

6.6 Pro-modularity of irreducible pseudo-deformations over P, v when p is a
non-split extension of ¥ of CM type

Let E be an imaginary extension of F in which every place of F above p splits completely. Suppose

that p(v) is induced from a character 7 of Gal(F/E). Since p(v) is, by assumption, reducible, the

conjugate character 7, is isomorphic to 5. We may, and will, furthermore assume that the restric-

tion of p to Gal(F/E) is trivial, and hence assume that X is trivial upon restriction to Gal(F/ E),

i.e. X factors through the character Gal(F/E) — F* of order 2 associated to the extension E over
F. However, since X is assumed to non-trivial, we may assume p to be odd.

Proposition 44. Suppose that FF satisfies the first condition in Proposition 32. Let p(v) denote the universal
deformation of p(v) of type ¥ over R2 v =Py

o Ifp(v) is non-dihedral, then there exists an admissible prime T of R V ) such that R? V) ~ Py v —

T, v gives rise to an isomorphism
R;(vv),r ~ ‘@g,v ~ Tg.
o ] f p(v) is dihedral, then @g,v is pro—modular.
o Lvery prime of Ps. vy is pro-modular.
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Suppose that F satisfies the conditions of Proposition 32. Every prime of Ps. v is pro-modular.
pl v

Proof. This follows as in Proposition 36 with s, v o~ Rgfvv) in place of Ry. O

6.7 Reducible split p and Eisenstein series, and pro-modularity of reducible de-
formations over Ps; A

For an open compact subgroup U of G(A>) which is hyper-special maximal compact to p, we let
Yy (C) denote the union
Pr(U,o)\H(F @ R)

GER
where H(F ®g R) is the |[Homg(F, R)|-copies of the complex upper half plane, G ranges over a
fixed set R of representatives for the strict ideal class group Ax/F*(U N AR)(F ®¢ R)} and
I'(U, o) denote the corresponding congruence subgroup of GLa(F)+. The boundary of the Bailey-

Borel-Satake-Serre compactification is described as the union

Br(v.e)\P'(F&R).

GER

Let C(T'(U, 6)) denote the set of representatives for T'(U, ) \PY(F). Similarly define C(T'(U", g))
with Ul in place of U. For ¢ in C(T'(U, )), we let I',(U, 6) denote the stabliser of ¢ in T(U, 6).
Similarly define T.(Ul), 6) for ¢ in C(T(UM ) 5)).

We follow Hida [51] (and Harder [45]) to consider the p-ordinary ‘Eisenstein/boundary co-
homology’

BUM o) = € eH'(T(U" 0),0/x)

GER c€C(I(U,0))

at the degree @ = [F : Q] which corresponds to a system of cusps of level p” over each ¢ which are
‘unramified at (every place of F above) p’ in the sense of [51]; the degree @ = 0, on the other hand,
corresponds to a system of cusps over ¢ that are (totally) ‘ramified at p. The cohomology group
comes equipped with natural action of (Or/p")* X (Or/p")*. Let B(U, O /X’) denote the limit
of the direct system {B( UM, & /X*)} with respect to r (for a fixed s) and B(U, €) the limit of of
the direct system {B(U, O /N')} with respect to's. Theorem 3.12 and Theorem 3.14 in [51] establish
that the B(U, €) is computed in terms of:

P P c(A(U.6),L/0)x C(A(U,0),L/O),

GER ceC(T(U,Ty))

where C (A, (U, a), L/0) denotes the space of continuous functions (with values in ‘L /&”) defined
on the quotient A, (U, 6) of (OF @z Z)* by the closure of the reductive quotient of I'.( U, 0), i.c.
the quotient of I',( U, ) by the intersection of I'( U, 6) and the unipotent radical of the stabiliser
of ¢ in B. One sees that B(U, O) is naturally a finitely generated over A(p)QA(p).

Remark. Since U C G(A™) is defined to be the subgroup of those congruent to ((1) T)

S T mod p" as in [51]), the cusps of level Il over ¢

in C(I') come in pairs, one for unramified and one for (totally) ramified (rather than only seeing

mod p” (rather than those congruent to
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the former). Geometrically, this corresponds to ‘balanced level structure at p”” in the sense of Katz-
Mazur in a neighbourhood of ¢. This viewpoint is consistent with, and expected from, work [52]
and [53] of N. Katz in the 70s about constructions of ‘Eisenstein measures’, for example.

Let Ty A(Us, €) denote the subalgebra in the endmorphism ring of B( U, &) over A(p) QA (p)

(where U = Us is chosen to be the open compact subgroup of G(Z) consisting of those matrices

which reduce to

3 T) modulo the prime-to-p conductor of ) generated over A(p)QA(p) by
T, for v not lying in § and U, §, for vin S, and let Ta denote the localisation with respect to
the maximal ideal of €Ty A (Us, €) generated by T, — (1 + X (¢(v))) for vnot in S and U, — 1,

Sy — X(@(v)) for v in S,. There exists a totally odd continuous lifting
PS,A - Gal(F/F) — GL2(TA>

of p which is a direct sum of characters, and is unramified outside S, trps a(¢(v)) = T for every
v not lying in §.

Let Pa denote the reducible quotient of the maximal quotient of the universal ring # for
pseudo-deformations of Dg(p) defined by the conditions: if (D : E — P,p : [' — EX)is
the universal CH representation of I' = Gal(Fs/F) over # deforming Dg(p), then p satisfies
the deformation conditions prescribed by Y at every p]ace of F above p. By definition, SDEA is a
quotient of Pa.

Proposition 45. The reducible pseudo-deformation quotient Ps, o of Ps. is pro-modular.

Proof. This follows from an isomorphism #a =~ T which can be established as in Proposition
425in[92]. O

7 Main theorems

Theorem 46. Let p : Gal(F/F) — GLy(&) be a continuous representation of the absolute Galois group
of a totally real field F such that

o pis rotally odd,
o the image of the inertia subgroup at every finite place of F above p is finite.

® p = (p mod A) is modular— there exists a cuspidal automorphic representation II of Resp/qGLy
whose associated p-adic Galois representation is isomorphic to p— when p is absolutely irreducible;
and suppose furthermore than p is p-ordinary modular— 11 is ordinary at every place of F above p—
when p = 2 and p is unramified (i.e. trivial) ar every infinite place of F.

o The semi-simplification of p is not scalar, i.e. not twist-equivalent to the trivial representation.

Then there exists a holomorphic modular eigenform of parallel weight 1 on Resp,gGLy whose associated
p-adic representation of Gal(F/F) is isomorphic to p. In particular, p has finite image.
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Remark. As mentioned in Introduction, the fourth assumption is unnecessary when p > 2.
Indeed, in this case, the modularity of p (the third assumption) forces itself to be ramified/non-
trivial at every infinite place of F.

Proof. We firstly observe that it is possible to replace F by its finite totally real soluble extension
of F if necessary to assume p is of the form described in Section 2.8. In fact, we may choose it so
that p is p-ordinary modular, if p is irreducible with insoluble (resp. soluble) image by virtue of
[5], [6], [55], [91] and [88] (resp. Langlands-Tunnell and Hida theory). We secondly observe that
there exists a finite totally real soluble extension of F for which the conditions of Proposition 32
hold. To this end, let £ be a fixed rational prime that does not divide any places in §; in particular,
¢ is distinct from p. We may choose a cyclotomic extension over F of degree a large power of £
such that the places of F in § all remain inert over any cyclotomic f-extension of sufficiently large
degree; this is possible, because every place of F in S splits completely only at finitely many ‘layers’
(and otherwise remains inert) over the cyclotomic Zg-extension. We may therefore choose F' in
such a way that the conditions of Proposition 32 hold simultaneously. We shall call the 1‘esulting
Cyclotomic extension F' again.

When p is reducible, we follow the argument in the proof of Theorem A in [81], with Lemma
111in [24] and a construction (by [27], say) of p-adic L-function over totally real fields as our input,
one finds an abelian totally real extension F’ of F such that L,(F', —1, X[Yp]_l) € 0 is divisible
by A— this is the assumption in Proposition 39 to show that there exists a non-Eisenstein maximal
ideal of a Hecke algebra corresponding to p.

Granted, we may assume:

e psatisfies the assumptions in Section 2.8 while maintaining the third and fourth assumptions
on p in the statement of the theorem; in particular, there exists a finite set of places § =
SpUSrUSLUSAU S such that p is unramified outside S and is trivial ac S, U SgU Sy, and
the image of complex conjugation by p at every place in Sy has determinant —1 (whether
p > 2 or not);

e pis totally odd and is unramified outside S;

e p is unramified at every place in S, and there exists a partition S, 4 and S, of S, such that
p(¢(v)) has distinct (resp. equal) eigenvalues {a, 5.} (resp. a, = 1) if v lies in Sy 4 (resp.
Spe)-

Given a subset A = AjU A, C §,4U Sy = S, the representation p gives rise to a map
pa : Ry, — Oe], where Ole] is the completed tensor product of the ring of dual numbers Oe, ] as v
ranges over S, ., when we choose a root of the characteristic polynomial of p(¢(v)) to be (1+¢€,)a,
(resp. ay, resp. B,) if vlies in S, (resp.Sp g — Ag, resp. Ay).

Suppose that p is irreducible. It then follows from Propositions 25, 32, 36, 43 and 44 that there

exists a map

Frn: Ts — Ol
for every A C S, such that
o T, FAn = trp(¢p(v))Fa for every v not S;

o U, Fp=a,Fyifvliesin Sy g — Ay, while U Fa = B,Fa if vlies in Ay
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o U Fa = a,Fa + Fa_gy it vlies in A, while U, Fa = a, Fp it vliesin §, . — A..

as in Theorem 54 in [76]. For example, when pa is irreducible with non-dihedral image (resp.
with dihedral image), one can find an admissible prime I' of Ry, which contains the prime ideal
corresponding to pa, and Fa is given by Ts; — T ~ RY, — O] (resp. Tx, — Ry — O|e)).

Exactly as in the proof of Theorem 54 in [76], we then establish that the Fa define cuspidal
overconvergent modular eigenforms of weight one and of ‘level Iwahori at p’, after possibly in-
creasing their levels at § but away from p to assume the eigenvalues at these places are all zero. The
argument in Section 6.5 in [76] proves that they ‘gluc’ to define a classical weight one form of level
old at p whose associated Galois representation is p. This proves the modularity of p.

If p is reducible, then p arises from an Eisenstein series of parallel weight 1 (c.f. Proposition

45). O

By making appeal to pro-modularity results and Hida theory, we also obtain the following
theorem:

Theorem 47. Let p : Gal(F/F) — GLy(0) be a continuous representacion of the absolute Galois group
of a totally real field F such that

o pis rotally odd,

o the restriction of p to the decomposition subgroup at every finite place v of F above p is reducible,
and is potentially semi-stable with (distinct) Hodge-Tate weight (k; + ¢, — 1,¢;) at 7 in H, =
Homg, (K, L) for a pair of integers k. > 2 and £, > 0,

® p = (p mod A) is modular— there exists a cuspidal automorphic representation II of Resp/qGLy
whose associated p-adic Galois representation is isomorphic to p— when p is absolutely irreducible;
and suppose furthermore than p is p-ordinary modular— 11 is ordinary at every place of F above p—
when p = 2 and p is unramified (i.e. trivial) at every infinite place of F.

o The semi-simplification of p is not scalar, i.e. not twist-equivalent to the trivial representation.

Then there exists a holomorphic p-ordinary modular eigenform of weight (k, €) on Res g /gGLg, where k =
Z k,7and { = Z l,7and H = H H, = Homg, (F, L), whose associated p-adic representation of

T€H T€H v

Gal(F/F) is isomorphic to p.
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