A conjecture of Fontaine-Mazur and weight one forms over totally real fields

Shu Sasaki

Contents

1 Introduction 2
2 Deformations of Galois representations 5
2.1 Universal rings for global liftings 7
$2.2 S_{\infty}$ 8
$2.3 S_{p}$ 9
$2.4 S_{Q, N}$ 10
$2.5 \quad S_{R}$ and S_{L} 10
$2.6 S_{A}$ 11
$2.7 \quad A_{\Sigma}^{\square}$ and B_{Σ}^{\square} 12
$2.8 \quad \bar{\rho}$ 12
2.9 Connected dimension 13
3 Modular forms and Hecke operators 14
$4 \bar{\rho}$ is irreducible with insoluble image 17
$5 \bar{\rho}$ is irreducible with soluble image 24
$5.1 \bar{\rho}$ is not induced from a character of an imaginary quadratic extension of F in which every place of F above p does not split completely 24
5.2 Selmer groups 25
5.3 Patching and localised $R=T$ 30
5.4 Finding Γ 34
5.5 A quick reminder about pseudo-representation theory 36
5.6 $\bar{\rho}$ is induced from a character of a CM field in which every place of F above p splits completely 38
$6 \quad \bar{\rho}$ is reducible and non-trivial 41
6.1 Pseudo-deformation of type Σ 41
6.2 Modular pseudo-deformations 42
6.3 Reducible subspaces and irreducible coverings 42
6.4 Reducible non-split $\bar{\rho}$ and cuspidal eigenforms 43
6.5 Pro-modularity of irreducible pseudo-deformations over $P_{\Sigma, \nabla}$ when $\bar{\rho}$ is a non- split extension of $\bar{\chi}$ of non-CM type 44
6.6 Pro-modularity of irreducible pseudo-deformations over $P_{\Sigma, \nabla}$ when $\bar{\rho}$ is a non- split extension of $\bar{\chi}$ of CM type 47
6.7 Reducible split $\bar{\rho}$ and Eisenstein series, and pro-modularity of reducible deforma- tions over $P_{\Sigma, \Delta}$ 48
7 Main theorems 50

1 Introduction

Let p be a rational prime. A conjecture of Fontaine-Mazur [37] asserts:
Conjecture 1. Let $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{p}\right)$ be a continuous representation of the absolute Galois group of a number field F. If ρ is unramified at all but finitely many places of F and is potentially semi-stable at every finite place of F above p, then ρ is 'geometric'.

This specialises to the following conjecture of Fontaine-Mazur:
Conjecture 2. Let $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{p}\right)$ be a continuous representation of the absolute Galois group of a number field F. If ρ is unramified at all but finitely many places of F and is potentially unramified (i.e the image of the inertia subgroup is finite) at every finite place of F above p, then ρ has finite image.

This paper proves many new cases of Conjecture 2 when $n=2, F$ is a totally real number field, and ρ is assumed to be totally odd (i.e. the image by ρ of complex conjugation with respect to every embedding $F \rightarrow P$ has determinant -1) and the associated mod p representation $\bar{\rho}$: $\operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ is modular. More precisely, we prove the following: Let L be a finite field extension of \mathbb{Q}_{p} with ring of integers \mathscr{O}, maximal ideal λ and residue field $\mathbb{F}=\mathscr{O} / \lambda$.

Theorem 3. Let $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(\mathscr{O})$ be a continuous representation of the absolute Galois group of a totally real field F such that

- ρ is totally odd,
- the image of the inertia subgroup at every finite place of F above p is finite.
- $\bar{\rho}=(\rho \bmod \lambda)$ is modular- there exists a cuspidal automorphic representation Π of $\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}$ whose associated p-adic Galois representation is isomorphic to $\bar{\rho}-$ when $\bar{\rho}$ is absolutely irreducible with insoluble image; and suppose furthermore than Π is ordinary at every place of F above p when $p=2$ and $\bar{\rho}$ is unramified (i.e. trivial) at every infinite place of F.
- The semi-simplification of $\bar{\rho}$ is not scalar, i.e. not twist-equivalent to the trivial representation.

Then there exists a holomorphic modular eigenform of parallel weight 1 on $\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}$ whose associated p-adic representation of $\operatorname{Gal}(\bar{F} / F)$ is isomorphic to ρ. In particular, ρ has finite image.

The finiteness of Galois representations associated to Hilbert modular eigenforms of parallel weight 1 is a well-known result of Deligne-Serre [32] $(F=\mathbb{Q})$ and Rogawski-Tunnell [73] (general $F)$.

We hasten to remark that the last/fourth condition follows from the third assumption (the oddness of $\bar{\rho}$) when $p>2$.

A case of the main theorem is established in [75], when $p \geq 5$ and $\bar{\rho}$ is absolutely irreducible when restricted to $\operatorname{Gal}\left(\bar{F} / F\left(\zeta_{p}\right)\right.$) (and if $p=5$ and the projective image of $\bar{\rho}$ is $\operatorname{PGL}_{2}\left(\mathbb{F}_{5}\right)$, it is furthermore assumed that the kernel of the projective representation of $\bar{\rho}$ does not fix $F\left(\zeta_{5}\right)$); and, as a corollary, Artin's conjecture for totally odd continuous representations $\mathrm{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ is proved completely.

By assumption, after replacing F by its finite totally real soluble extension if necessary, it is possible to assume ρ is p-ordinary (i.e. reducible at every place of F above p), and we prove that ρ is pro-modular, i.e., arises from a p-ordinary p-adic modular eigenform. To this end, we directly compare p-adic families, ' R ' of p-ordinary Galois representations and ' T ' of p-ordinary modular forms (whether p is odd or not), without recourse to unitary groups over CM fields (hence our promodularity results do not follow from Thorne's [89] 'by functoriality'). In fact, our overall approach to construct weight one forms is crucially dependent on what we know about all Hecke eigenvalues (hence q-expansion coefficients by 'multiplicity one') of p-adic eigenforms (especially those generalised eigenvalues at places above p), and we know of no other route than to establish an ' $R=T$ ' theorem. The Calegari-Geraghty variant [18] of the Taylor-Wiles argument may well allow us to circumvent some of the issues arising from the 'multiplicity one problem' (by directly comparing deformations of Galois representations that are potentially unramfied at p and the coherent cohomology complex of parallel weight one Hilbert modular forms) but this alternative approach is still contingent upon several outstanding conjectures about the local-global compatibility of automorphic Galois representations.

We establish the aforementioned pro-modularity via finding a co-dimension 1 prime Γ of R containing p, such that the specialisation $\rho_{\Gamma}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(\mathbb{F}[[\boldsymbol{\pi}]])$ of the universal p ordinary deformation over R of $\bar{\rho}$ at Γ is irreducible and is not dihedral (i.e. not induced from a quadratic extension of F). The irreducible ρ_{Γ}, with 'large image', over the discrete valuation ring $\mathbb{F}[[\pi]]$, instead of $\bar{\rho}$, is then used to pull off an analogue of the Taylor-Wiles argument. In finding a such prime Γ, while we allow ourselves to trade F for its finite totally real soluble extensions where convenient, ascertaining ρ_{Γ} is irreducible and non-dihedral requires us to tread carefully.

Suppose that $\bar{\rho}$ is irreducible with soluble image and is induced from a quadratic extension E of F. On one hand, assuming that E is not an imaginary quadratic extension of F in which every place of F above p splits completely, it follows without further expenditure of effort that ρ_{Γ} is irreducible and non-dihedral. This is the approach taken by Skinner [79] $(p>2)$ and Allen [1] $(p=2)$, though the latter works under the further assumption in which determinants are fixed as in KhareWintenberger [56]. On the other hand, when $\bar{\rho}$ is induced from an imaginary quadratic extension E of F in which every place of F above p splits completely, it is a priori possible for ρ_{Γ} to be induced from the CM extension. To overcome this problem, we make appeal to the pseudo-representation theory, due mostly to Bellaïche and Chenevier [9], to observe that if the universal deformation over R is not dihedral, i.e. not induced from a character of $\mathrm{Gal}\left(\bar{F} / F^{+}\right)$for any quadratic extension F^{+} of F (resp. is dihedral and induced from a character of $\operatorname{Gal}(\bar{F} / E)$), then one can find a non-dihedral prime over an infinitesimal deformation of $\bar{\rho}$, as a precursor to conjuring up Γ as above (resp. one can instead identify R directly with the quotient of T arising from E-CM forms). This is a variation of the well-known observation (see work of Ghate, Dimitrov, Wiese and others) that non-CM p ordinary families of (Hilbert) modular forms almost never intersect with CM p-ordinary families (even at weight one).

The question about whether it is possible at all to find Γ with irreducible ρ_{Γ} is prevalent when $\bar{\rho}$
is reducible. In this case, it is not unreasonable to expect that the 'reducible quotient' R_{Δ} of the p ordinary deformation ring R, where corresponding representations are (globally) reducible, define irreducible components of R. In fact, we do not know a priori that R is equi-dimensional! These make our search for an 'irreducible' prime Γ (which should inevitably lie in $R-R_{\Delta}$) more difficult. For example, when $F=\mathbb{Q}$, the reducible ('Eisenstein') locus does define irreducible components of the dimension equal to that of the irreducible ('cuspidal') components.

Skinner \& Wiles were the first to tackle this issue in [80], and their work has been vastly generalised by Thorne [89] and his collaborators [2] in arbitrary dimension. To elaborate, let $1+\boldsymbol{\gamma}_{F}$ be the \mathbb{Z}_{p}-rank of the p-adic closure in $\left(\mathscr{O}_{F} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}\right)^{\times}$of the group $\mathscr{O}_{F,+}^{\times}$of totally positive units in the ring \mathscr{O}_{F} of integers of F. The Leopoldt conjecture asserts that $\boldsymbol{\gamma}_{F}$ should be 0 . Assuming that $\bar{\rho}$ is reducible with its semi-simplification of the form $1 \oplus \bar{\chi}$ say, we know, on one one hand, R_{Δ} has dimension bounded above by $r_{F}=1+2\left(1+\gamma_{F}\right)+\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}^{1}(1, \bar{\chi})$, while, on the other hand, the dimension of R is bounded below by $s_{F}=1+[F: \mathbb{Q}]+\gamma_{F}$ in terms dimensions of local versal deformation rings at ramified places. It is reasonable to expect $r_{F} \leq s_{F}$, but there is nothing conclusive to suggest that the inequality would always have to be strict! This is mostly to do with the fact that it is hard to get one's hands on $\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}^{1}(1, \bar{\chi})$. To circumvent the issue, Skinner-Wiles [80] instead makes appeal to Washington's result [94] (resp. Waldschmidt's [92]) about ℓ-adic Iwasawa invariants (for ℓ not equal to p) to bound $\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}^{1}(1, \bar{\chi})\left(\right.$ resp. $1+\gamma_{F}$), and manages to find a finite soluble totally real extension F^{\prime} of F of a sufficiently large ℓ-power degree for which the strict inequality $r_{F^{\prime}}<s_{F^{\prime}}$ holds'. This 'relative smallness' of R_{Δ}^{\prime} with respect to R^{\prime} consequently allows [80] to find a prime Γ in R^{\prime} not lying in R_{Δ}^{\prime}, i.e. an irreducible Γ. The drawback of this argument, however, is that Washington's result requires F^{\prime} to be abelian over \mathbb{Q} and this significantly qualifies the pro-modularity theorem of [80]. L. Pan [67] follows the strategy of Skinner-Wiles, and has similar, but more general, results about modularity of p-adic representations $\operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)$ which are potentially semi-stable at p, but for an abelian extension F over \mathbb{Q} in which p splits completely.

In this paper, we remove this 'abelian condition' entirely. The gist of our argument is that, instead of trying to achieve $r_{F}<s_{F}$, we prove pro-modularity separately over Spec R_{Δ} and each affine open covering of the complement Spec $R-\operatorname{Spec} R_{\Delta}$; for the former, a theory of Eisenstein series achieves this, while for the latter, the irreducibility of Γ comes for free (!) even though $\bar{\rho}$ is reducible, and an argument similar to the one in the generic case attains pro-modularity. To make this part of the argument work, we make essential use of the pseudo-deformation theory [91] developed by Chenevier [21], Bellaiche-Chenevier [9] and Wake-Wang-Erickson [91]. To establish that the pull-back of the universal Galois representation over Spec R to any covering of Spec $R-\operatorname{Spec} R_{\Delta}$ is indeed irreducible, it is necessary for us to know that it is of 'Generalised Matrix Algebra' type and, for this reason, $\bar{\rho}$ (and its restriction to a finite soluble totally real field extension of F) is assumed to be non-trivial. This can be attained by maintaining $\bar{\rho}$ to be totally odd if $p>2$ but not necessarily so when $p=2$.

The additional assumption in the third in the case of $p=2$ can be removed if one can prove a result of the form ' $\bar{\rho}$ is modular $\Rightarrow \bar{\rho}$ is p-ordinary modular (up to a finite totally real soluble base change)' as in [87]. This is a problem of different nature and we hope to come back to it separately in the future.

[^0]In a forthcoming work, we hope to address the case when $\bar{\rho}$ is twist-equivalent to the trivial representation.

Acknowledgements This manuscript was originally prepared as 'Integral models of Hilbert modular varieties, deformations of modular Galois representations, and weight one forms II' as a sequel to [75], but it has since been vastly updated and strengthened especially in the residually reducible case.

The author would also like to thank T. Gee and J. Newton for a few helpful comments on an earlier draft of the paper, V. Paškūnas and J. Shotton for helpful discussions. He is especially grateful to F. Diamond and J. Kiln for numerous discussions on various aspects of this paper.

2 Deformations of Galois representations

Fix algebraic closures $\overline{\mathbb{Q}}$ and $\overline{\mathbb{Q}}_{p}$ once for all. Choose an embedding $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}_{p}$ once for all.
Let F be a totally real field, \mathbb{F} be a field of characteristic $p>0$, and $\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ be a totally odd (i.e. the image of complex conjugation with respect to every embedding of F into P is non-trivial), continuous representation of the absolute Galois group $\mathrm{Gal}(\bar{F} / F)$ of F.

Let $\chi_{\text {cyc }}$ denote the p-adic cyclotomic character $\operatorname{Gal}(\bar{F} / F) \rightarrow \mathbb{Z}_{p}^{\times}$and $\bar{\chi}_{\text {cyc }}$ denote its $\bmod p$ variant.

Let L denote a finite extension of \mathbb{Q}_{p} containing the image of every embedding $F \rightarrow \overline{\mathbb{Q}} \rightarrow$ $\overline{\mathbb{Q}}_{p}$ and let \mathscr{O} denote its ring of integers with residue field \mathbb{F}. Let λ denote a uniformiser we fix throughout the paper.

For every place v of F, let F_{v} denote the completion of F at $\mathrm{v}, \mathscr{O}_{F_{\mathrm{v}}}$ denote the ring of integers and \mathbb{F}_{v} the residue field at v . Let $\boldsymbol{\pi}_{\mathrm{v}}$ denote a uniformiser of $\mathscr{O}_{F_{\mathrm{v}}}$. Let $D_{\mathrm{v}} \simeq \operatorname{Gal}\left(\bar{F}_{\mathrm{v}} / F_{\mathrm{v}}\right)$ denote the decomposition subgroup at v and I_{v} the inertia subgroup at v .

As in [42] (and [22]), we 'normalise' the local Langlands correspondence in such a way that if Π is an irreducible admissible representation of $\mathrm{GL}_{2}(K)$ for a finite extension K of \mathbb{Q}_{p}, then the corresponding Weil-Deligne representation is the one associated to $\Pi^{\vee} \otimes| |^{-1 / 2}$ by Harris-Taylor's local Langlands correspondence.

Let \mathscr{C} denote the category whose objects are artinian local \mathscr{O}-algebras R for which the structure map $\mathscr{O} \rightarrow R$ induces an isomorphism on residue fields; and let $\hat{\mathscr{C}}$ denote the full subcategory of the category whose objects are topological \mathscr{O}-algebras which are limits of objects in \mathscr{C}. The morphisms of \mathscr{C} and $\hat{\mathscr{C}}$ are continuous homomorphisms of \mathscr{O}-algebras which induce isomorphisms on the residue fields.

For every place v above p, we identify, via the local Artin map Art $_{\mathrm{v}}$, once for all:

- the pro-p-part $1+\pi_{\mathrm{v}} \mathscr{O}_{F_{\mathrm{v}}}$ of $\mathscr{O}_{F_{\mathrm{v}}}^{\times}$
- the image Δ_{v} of the inertia subgroup at v in the pro- p completion of the maximal abelian quotient of the decomposition subgroup D_{v} at v .

Let $\Delta_{p}=\prod_{\mathrm{v}} \Delta_{\mathrm{v}}$ and let Λ_{p} denote Iwasawa (group) algebra $\mathscr{O}\left[\left[\Delta_{p}\right]\right]$ (of relative dimension $\sum_{\mathrm{v}}\left[F_{\mathrm{v}}: \mathbb{Q}_{p}\right]=[F: \mathbb{Q}]$ over $\left.\mathscr{O}\right)$. On the other hand, let Δ^{p} denote the pro-p completion of the Galois group of the maximal extension of F unramified outside a finite set S of places in F containing the set S_{p} of places of F above p and the set S_{∞} of infinite places of F, and let Λ^{p} denote
the Iwasawa group algebra $\mathscr{O}\left[\left[\Delta^{p}\right]\right]$ (of relative dimension $1+\gamma_{F}=\mathrm{rk}_{\mathbb{Z}_{p}}\left(\mathscr{O}_{F} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}\right)^{\times} / \overline{\mathscr{O}_{F}^{\times}}$, where γ_{F} denotes the Leopoldt defect for (F, p) which is conjectured to be 0$)$. Let

$$
\Lambda=\Lambda_{p} \hat{\otimes} \Lambda^{p}
$$

it is of dimension $1+[F: \mathbb{Q}]+\gamma_{F}$ over \mathscr{O}.
There is a universal one-dimensional deformation

$$
\phi=\prod_{\mathrm{v}} \phi_{\mathrm{v}}: \Delta_{p}=\prod_{\mathrm{v}} \Delta_{\mathrm{v}} \rightarrow \Lambda_{p}
$$

of the trivial representation $\Delta_{p} \rightarrow \mathbb{F}^{\times}$and a universal one-dimensional deformation

$$
\phi^{\prime}: \Delta^{p} \rightarrow \Lambda^{p}
$$

of the trivial representation $\Delta^{p} \rightarrow \mathbb{F}^{\times}$. We often see via

$$
\left(\phi, \phi^{\prime}\right) \mapsto\left(\chi, \chi^{\prime}\right)=\left(\phi,\left.\prod_{\mathrm{v}} \phi_{\mathrm{v}}^{-1} \phi^{\prime}\right|_{\Delta_{v}}\right)
$$

that $\Lambda=\Lambda_{p} \hat{\otimes} \Lambda^{p}$ also parameterises the pairs $\left(\chi, \chi^{\prime}\right)$ of one-dimensional deformations of $\Delta_{p} \rightarrow$ \mathbb{F}^{\times}over local noetherian \mathscr{O}-algebras with residue field \mathbb{F} such that their product factors through the p-adic completion $\overline{\mathscr{O}_{F}^{\times}} \cap \Delta_{p}$.

A character of I_{v} (or Δ_{v}) is said to be algebraic of weight $r_{\mathrm{v}}=\left(r_{\tau}\right) \in \mathbb{Z}^{\operatorname{Hom}_{\mathbb{Q}_{p}}\left(F_{v}, L\right)}$ if it is given by $\prod_{\tau}\left(\tau \circ \operatorname{Arr}_{v}^{-1}\right)^{-r_{\tau}}$. A pair $\left(\chi, \chi^{\prime}\right)$ of one-dimensional deformations as above is said to be algebraic if there exists a pair $\left(k=\left(k_{\mathrm{v}}\right), \ell=\left(\ell_{\mathrm{v}}\right)\right)$ of $[F: \mathbb{Q}]$-tuple of integers with $k_{\mathrm{v}}=\sum_{\tau} k_{\tau} \tau$ and $\ell_{\mathrm{v}}=\sum_{\tau} \ell_{\tau} \tau$ and $k_{\tau} \geq 1$ and $\ell_{\tau} \geq 0$ for every τ in $\operatorname{Hom}_{\mathbb{Q}_{p}}\left(F_{\mathrm{v}}, L\right)$, such that χ_{v} (resp. $\chi_{\mathrm{v}}^{\prime}$) is algebraic of weight $\ell_{\mathrm{v}}\left(\right.$ resp. $\left.\ell_{\mathrm{v}}+k_{\mathrm{v}}-1\right)$ for every v in S_{p}.

Give a finite set of places of F as above, Let F_{S} denote the maximal extension of F unramified outside S. Let $\Sigma=\left(S, T,\left\{L_{v}\right\}\right)$ denote a deformation data consisting of S, a subset T of 'framed places' and $L_{v} \subset H^{1}\left(D_{\mathrm{v}}\right.$, ad $\left.\bar{\rho}\right)$ for every v in S which defines a local deformation problem at v with corresponding ideal I_{v}^{\square} of R_{v}^{\square}, with $N_{\mathrm{v}}=H^{0}\left(D_{\mathrm{v}}\right.$, ad $\left.\bar{\rho}\right)$ for every finite place v in $S-T$.

$$
\begin{aligned}
0 & \rightarrow H_{\Sigma}^{0}(F, \operatorname{ad} \bar{\rho}) \rightarrow H^{0}\left(\operatorname{Gal}\left(F_{S} / F\right), \operatorname{ad} \bar{\rho}\right) \rightarrow \bigoplus_{T} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right) \oplus \bigoplus_{v} \bigoplus_{\mathrm{v} \in S-T} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right) / N_{\mathrm{v}} \\
& \rightarrow H_{\Sigma}^{1}(F, \operatorname{ad} \bar{\rho}) \rightarrow H^{1}\left(\operatorname{Gal}\left(F_{S} / F\right), \operatorname{ad} \bar{\rho}\right) \rightarrow \bigoplus_{T} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right) \oplus \bigoplus_{\mathrm{v} \in S-T}^{1} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right) / L_{\mathrm{v}} \\
& \rightarrow H_{\Sigma}^{2}(F, \operatorname{ad} \bar{\rho}) \rightarrow H^{2}\left(\operatorname{Gal}\left(F_{S} / F\right), \operatorname{ad} \bar{\rho}\right) \rightarrow \bigoplus_{T}^{T} H^{2}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right) \oplus \bigoplus_{\mathrm{v} \in S-T}^{2} H^{2}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right) \\
& \rightarrow H_{\Sigma}^{2}(F, \operatorname{ad} \bar{\rho}) \rightarrow H^{3}\left(\operatorname{Gal}\left(F_{S} / F\right), \operatorname{ad} \bar{\rho}\right) \rightarrow \cdots
\end{aligned}
$$

Given a deformation data Σ as above, we let R_{Σ}^{\square} the universal ring for T-framed deformations of type Σ in the sense of Definition 2.2.7 in [22]. Let $H_{\Sigma}^{r}(F, \operatorname{ad} \bar{\rho})$ denote the r-th cohomology of the complex defined by Σ as in [22] (See Chapter 2 in [75]).

As Σ reads ramification of classes in $H^{1}(\operatorname{Gal}(\bar{F} / F)$, ad $\bar{\rho})$, by $H_{\Sigma}^{r}(F$, ad $\bar{\rho})$, we really mean $H_{\Sigma}^{r}\left(\operatorname{Gal}\left(F_{S} / F\right)\right.$, ad $\left.\bar{\rho}\right)$. We often write $H^{1}\left(F_{S}\right.$, ad $\left.\bar{\rho}\right)$ for $H^{1}\left(\operatorname{Gal}\left(F_{S} / F\right)\right.$, ad $\left.\bar{\rho}\right)$ and do it similarly with ad $\bar{\rho}(1)$ in place of ad $\bar{\rho}$.

We let L_{v}^{\perp} denote the annihilator of L_{v} in $H^{1}\left(D_{\mathrm{v}}\right.$, ad $\left.\bar{\rho}(1)\right)$ induced by the pairing ad $\bar{\rho} \times$ $\operatorname{ad} \bar{\rho}(1) \rightarrow \mathbb{F}(1)$ and we let

$$
H_{\Sigma^{\perp}}^{1}(F, \operatorname{ad} \bar{\rho})=\operatorname{ker}\left(H^{1}\left(F_{S}, \operatorname{ad} \bar{\rho}(1)\right) \rightarrow \bigoplus_{S-T} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}(1)\right) / L_{\mathrm{v}}^{\perp}\right)
$$

Let A_{Σ}^{\square} denote the completed tensor product over \mathscr{O}

$$
\hat{\bigotimes}_{\mathrm{v} \in T} R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square}
$$

of the quotient $R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square}$ of R_{v}^{\square} by the ideal I_{v}^{\square} defined by L_{v}, as v ranges over T. Let R^{\square} denote the formal power series ring in $4|T|-\operatorname{dim}_{\mathbb{F}} H^{0}\left(F_{S}\right.$, ad $\left.\bar{\rho}\right)$ variables with coefficients in \mathscr{O}, normalised such that

$$
R_{\Sigma}^{\square} \simeq R_{\Sigma} \otimes R^{\square}
$$

2.1 Universal rings for global liftings

Suppose $n=2$. Then
Proposition 4. $\operatorname{dim}_{\mathbb{F}} H_{\Sigma}^{1}(F, \operatorname{ad} \bar{\rho})$ equals

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{F}} H_{\Sigma}^{1}(F, \operatorname{ad} \bar{\rho}(1))+\operatorname{dim}_{\mathbb{F}} H_{\Sigma}^{0}(F, \operatorname{ad} \bar{\rho})-\operatorname{dim}_{\mathbb{F}} H^{0}\left(F_{S}, \operatorname{ad} \bar{\rho}(1)\right)-\chi\left(F_{S}, \operatorname{ad} \bar{\rho}\right) \\
+ & \sum_{\mathrm{v} \in S} \chi\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)+\sum_{\mathrm{v} \in(S-T)} \operatorname{dim}_{\mathbb{F}} L_{\mathrm{v}}-\operatorname{dim}_{\mathbb{F}} N_{\mathrm{v}}
\end{aligned}
$$

We say $\bar{\rho}$ is exceptional if

- $p=3$,
- $\bar{\rho}$ is induced from $\operatorname{Gal}\left(\bar{F}\left(\zeta_{3}\right) / F\right)$.

Proposition 5. Suppose that

- For a place v in $(S-T) \cap S_{p}$,

$$
\operatorname{dim}_{\mathbb{F}} L_{\mathrm{v}}-\operatorname{dim}_{\mathbb{F}} N_{\mathrm{v}}=\operatorname{dim}_{\mathbb{F}} L_{\mathrm{v}}-\operatorname{dim}_{\mathbb{F}} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)=\left[F_{\mathrm{v}}: \mathbb{Q}_{p}\right]
$$

- For a place v in $(S-T) \cap S_{\infty}$,

$$
\operatorname{dim}_{\mathbb{F}} L_{\mathrm{v}}-\operatorname{dim}_{\mathbb{F}} N_{\mathrm{v}}=-1
$$

Then
$\operatorname{dim}_{\mathbb{F}} H_{\Sigma}^{1}(F, \operatorname{ad} \bar{\rho})=\operatorname{dim}_{\mathbb{F}} H_{\Sigma^{\perp}}^{1}(F, \operatorname{ad} \bar{\rho}(1))-1+\sum_{(S-T)-S_{\infty}}\left(\operatorname{dim}_{\mathbb{F}} L_{\mathrm{v}}-\operatorname{dim}_{\mathbb{F}} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)\right)-[F: \mathbb{Q}]$
unless $\bar{\rho}$ is exceptional, in which case
$\operatorname{dim}_{\mathbb{F}} H_{\Sigma}^{1}(F, \operatorname{ad} \bar{\rho})=\operatorname{dim}_{\mathbb{F}} H_{\Sigma^{\perp}}^{1}(F, \operatorname{ad} \bar{\rho}(1))-2+\sum_{(S-T)-S_{\infty}}\left(\operatorname{dim}_{\mathbb{F}} L_{\mathrm{v}}-\operatorname{dim}_{\mathbb{F}} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)\right)-[F: \mathbb{Q}]$.

Proof. This can be proved as in Proposition 5 in Section 2 of [75]. If $\bar{\rho}$ is not exception (resp. is exceptional), then $\operatorname{dim} H^{0}\left(F_{S}\right.$, ad $\left.\bar{\rho}(1)\right)=\operatorname{dim} H^{0}\left(F_{S}, \operatorname{ad}^{0} \bar{\rho}(1)\right)+\operatorname{dim} H^{0}\left(F_{S}, \mathbb{F}(1)\right)=0+1$ (resp. $\operatorname{dim} H^{0}\left(F_{S}, \operatorname{ad} \bar{\rho}(1)\right)=2$).

Also $H_{\Sigma}^{0}(F$, ad $\bar{\rho})$ is a subspace of the one-dimensional \mathbb{F}-vector space $H^{0}(F$, ad $\bar{\rho})$, but the $N_{\text {v }}$ forces the dimension of the former to be strictly smaller than that of the latter, i.e., $H_{\Sigma}^{0}(F, a d \bar{\rho})=$ 0 (whether $T=\varnothing$ or not!).

Furthermore, it follows from the global (resp. local) Euler characteristic formula (resp. formulae) that $\chi\left(F_{S}\right.$, ad $\left.\bar{\rho}\right)=-2[F: \mathbb{Q}]\left(\right.$ resp. $\sum_{\mathrm{v} \in S} \chi\left(D_{\mathrm{v}}\right.$, ad $\left.\bar{\rho}\right)=\sum_{\mathrm{v} \in S_{p}}-4\left[F_{\mathrm{v}}: \mathbb{Q}_{p}\right]+\sum_{\mathrm{v} \in S_{\infty}} 4=$ 0).

Remark. $\operatorname{dim}_{\mathbb{F}} H^{0}(F, \operatorname{ad} \bar{\rho})=1$ whether p is odd or not.

We now apply the formula above to

$$
\Sigma_{Q, N}=\left(S \cup S_{Q, N}, T,\left\{L_{\mathrm{v}}\right\}_{\mathrm{v} \in S \cup S_{Q, N}}\right)
$$

to compute $\operatorname{dim}_{\mathbb{F}} H_{\Sigma_{Q, N}}^{1}(F, \operatorname{ad} \bar{\rho})$, where $T \subset S-S_{\infty}$ and, for every v in $S_{Q, N}=\left(\left(S \cup S_{Q, N}\right)-\right.$ $T)-S_{\infty}$, the local deformations at v are defined such that

$$
\operatorname{dim}_{\mathbb{F}} L_{\mathrm{v}}-\operatorname{dim}_{\mathbb{F}} N_{\mathrm{v}}=\operatorname{dim}_{\mathbb{F}} L_{\mathrm{v}}-\operatorname{dim}_{\mathbb{F}} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)=1
$$

if $p>2$ and such that $L_{\mathrm{v}}=H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)$ and

$$
\operatorname{dim}_{\mathbb{F}} L_{\mathrm{v}}-\operatorname{dim}_{\mathbb{F}} N_{\mathrm{v}}=\operatorname{dim}_{\mathbb{F}} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)-\operatorname{dim}_{\mathbb{F}} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)=2
$$

if $p=2$.

$2.2 \quad S_{\infty}$

Following [10], for any infinite place vand a non-negative integer \bullet, we let $H^{\bullet}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)^{*}$ denote the image of $H^{\bullet}\left(D_{\mathrm{v}}, \operatorname{ad}^{0} \bar{\rho}\right)$ in $H^{\bullet}\left(D_{\mathrm{v}}\right.$, ad $\left.\bar{\rho}\right)$. The versal odd deformation ring R_{v}^{-1} (resp. the universal ring $R_{\mathrm{v}}^{\square,-1}$ for odd liftings) gives rise to

- $N_{\mathrm{v}}=\mathbf{N}_{\bar{F}_{\mathrm{v}} / F_{\mathrm{v}}}(\operatorname{ad} \bar{\rho}) \subset(\operatorname{ad} \bar{\rho})^{D_{\mathrm{v}}}$ (so that $H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right) / N_{\mathrm{v}}$ is the zero-th Tate cohomology group,
- $L_{\mathrm{v}}=H^{1}\left(D_{\mathrm{v}}, \mathrm{ad} \bar{\rho}\right)^{*}$.

We leave it as an exercise to check:

$$
\begin{aligned}
& \quad \operatorname{dim}_{\mathbb{F}} N_{\mathrm{v}} \\
& = \begin{cases}1 & \text { if } p>2 \\
1 & \text { if } p=2 \text { and } \bar{\rho}_{\mathrm{v}} \text { is non-trivial } \\
4 & \text { if } p=2 \text { and } \bar{\rho}_{\mathrm{v}} \text { is trivial }\end{cases}
\end{aligned}
$$

and

$$
= \begin{cases}\operatorname{dim}_{\mathbb{F}} L_{\mathrm{v}} \\ 0 & \text { if } p>2, \\ 0 & \text { if } p=2 \text { and } \bar{\rho}_{\mathrm{v}} \text { is non-trivial, } \\ 3 & \text { if } p=2 \text { and } \bar{\rho}_{\mathrm{v}} \text { is trivial, }\end{cases}
$$

for $\operatorname{dim}_{\mathbb{F}} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)^{*}=\operatorname{dim}_{\mathbb{F}} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad}^{0} \bar{\rho}\right)-\operatorname{dim}_{\mathbb{F}} \operatorname{Coker}\left(H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right) \rightarrow H^{0}\left(D_{\mathrm{v}}, \mathbb{F}\right)\right)$, where $\operatorname{dim}_{\mathbb{F}} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad}^{0} \bar{\rho}\right)$ can be computed by the archimedean Euler-Poincare characteristic and the local Tate duality

$$
\operatorname{dim}_{\mathbb{F}} \operatorname{ad}^{0} \bar{\rho}-\left(\operatorname{dim} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad}^{0} \bar{\rho}\right)+H^{0}\left(D_{\mathrm{v}}, \operatorname{Hom}_{\mathbb{F}}\left(\operatorname{ad}^{0} \bar{\rho}, \mathbb{F}\right)(1)\right)\right)
$$

$\left(\right.$ when $\left.p=2, \operatorname{Hom}_{\mathbb{F}}\left(\operatorname{ad}^{0} \bar{\rho}, \mathbb{F}\right)(1) \simeq \operatorname{ad} \bar{\rho} / \mathbb{F}\right)$, and where

$$
\begin{aligned}
& \quad \operatorname{dim}_{\mathbb{F}} \operatorname{Coker}\left(H^{0}\left(D_{\mathrm{v}}, \text { ad } \bar{\rho}\right) \rightarrow H^{0}\left(D_{\mathrm{v}}, \mathbb{F}\right)\right) \\
& = \begin{cases}0 & \text { if } p>2, \\
1 & \text { if } p=2 \text { and } \bar{\rho}_{\mathrm{v}} \text { is non-trivial, } \\
0 & \text { if } p=2 \text { and } \bar{\rho}_{\mathrm{v}} \text { is trivial. }\end{cases}
\end{aligned}
$$

$2.3 \quad S_{p}$

Following [75], let $R_{\mathrm{v}}^{\square, \Delta}$, for every place v above p, denote the quotient of $R_{\mathrm{v}}^{\square} \hat{\otimes} \mathscr{O}\left[\left[\Delta_{\mathrm{v}} \times \Delta_{\mathrm{v}}\right]\right]$ by an ideal $I_{\mathrm{v}}^{\square, \Delta}$ parameterising $\left(\rho, \alpha(\phi),\left(\chi_{1}, \chi_{2}\right)\right)$ where ρ is a lifting of $\bar{\rho}_{\mathrm{v}}, \alpha(\phi)$ is a root of the polynomial $X^{2}-\operatorname{tr} \rho(\phi)+\operatorname{det} \rho(\phi)=0$ and $\left(\chi_{1}, \chi_{2}\right)$ is a pair of characters parameterised by $\mathscr{O}\left[\left[\Delta_{\mathrm{v}} \times \Delta_{\mathrm{v}}\right]\right]$ satisfying the conditions
(I) $\operatorname{tr} \rho(\sigma)=\chi_{1}(\sigma)+\chi_{2}(\sigma)$ for σ in I_{v},
(II) $\operatorname{tr} \rho(\phi)=\alpha(\phi)+\beta(\phi)$ where $\beta(\phi)$ denotes $\operatorname{det} \rho(\phi) / \alpha(\phi)$,
(III) $\operatorname{det}(\rho(\phi)-\beta(\phi))=0$,
(IV) $1+\operatorname{det}\left(\chi_{2}(\sigma)^{-1} \rho(\sigma)\right)=\operatorname{tr}\left(\chi_{2}(\sigma)^{-1} \rho(\sigma)\right)$ for σ in I_{v},
(V) $\left(\rho(\sigma)-\chi_{2}(\sigma)\right)\left(\rho(\tau)-\chi_{2}(\tau)\right)=\left(\chi_{1}(\sigma)-\chi_{2}(\sigma)\right)\left(\rho(\tau)-\chi_{2}(\tau)\right)$ for σ, τ in I_{v},
(VI) $(\rho(\phi)-\alpha(\phi))\left(\rho(\sigma)-\chi_{2}(\sigma)\right)=(\beta(\phi)-\alpha(\phi))\left(\rho(\sigma)-\chi_{2}(\sigma)\right)$ for σ in I_{v}.

We firstly establish that $R_{\mathrm{v}}^{\square, \Delta} / \lambda$ is Cohen-Macaulay and reduced. To see this, we follow the proof of Proposition 5 in [75] and let $S_{\mathrm{v}}^{\square, \Delta} / \lambda$ (resp. $S_{\mathrm{v}}^{\square, \Delta}[1 / \lambda]$) denote the quotient of the ring of polynomials over $\mathbb{F}\left(\right.$ resp. L) in $5\left[F_{\mathrm{v}}: \mathbb{Q}_{p}\right]+5$ variables, by the ideal generated by the 2-by- 2 minors of the $2 \times\left(2\left[F_{\mathrm{v}}: \mathbb{Q}_{p}\right]+2\right)$ matrix. It follows from Theorem 2.7 (resp. Theorem 2.11) in [14] that $S_{\mathrm{v}}^{\square, \Delta} / \lambda$ and $S_{\mathrm{v}}^{\square, \Delta}[1 / \lambda]$ are Cohen-Macaulay (resp. reduced). In fact, these rings are often known as determinantal rings and are known to be normal domains.

Any lifting of $\bar{\rho}_{\mathrm{v}}$ parametrised by $R_{\mathrm{v}}^{\square, \Delta}$ factors through the Galois group \mathbb{G}_{v} of the maximal pro- p extension of F_{v} whose inertia subgroup \mathbb{I}_{v} is abelian of exponent p. The structure (i.e. generators and relations) of \mathbb{G}_{v} is given, for example, in Chapter VII, Section 5, of [65] or Section 5 of [60], while the quotient $\mathbb{G}_{v} / \mathbb{I}_{v}$ is topologically generated by a Frobenius lift. Since \mathbb{I}_{v} is abelian, the 'relations' boil down to one single equation in the case when F_{v} contains a p-th root of unity, leaving \mathbb{I}_{v} freely generated by $\left[F_{\mathrm{v}}: \mathbb{Q}_{p}\right]$ elements (whether p is odd or not). It therefore follows
that the map $R_{\mathrm{v}}^{\square, \Delta} / \lambda \rightarrow S_{\mathrm{v}}^{\square, \Delta} / \lambda$, defined explicitly in the proof of Proposition 5 in [75], is an isomorphism.

It follows from Proposition 2.2.1 in [82] that $R_{\mathrm{v}}^{\square, \Delta}$ is flat over \mathscr{O}. Proposition 2.3.1 in [82] (resp. Theorem 2.1.3 in [13]) then proves $R_{\mathrm{v}}^{\square, \Delta}$ is reduced (resp. Cohen-Macaulay).

Since $R_{\mathrm{v}}^{\square, \Delta}[1 / \pi]$ is isomorphic to a completion of $S_{\mathrm{v}}^{\square, \Delta}[1 / \pi]$ and the latter is a normal domain, it follows from the Zariski Main Theorem that $R_{\mathrm{v}}^{\square, \Delta}[1 / \pi]$ (hence $R_{\mathrm{v}}^{\square, \Delta}$) is a normal domain. As a result, Spec $R_{\mathrm{v}}^{\square, \Delta} / \Gamma$ is geometrically irreducible for a minimal ideal Γ of $\mathscr{O}\left[\left[\Delta_{\mathrm{v}} \times \Delta_{\mathrm{v}}\right]\right]$.
Lemma 6. Let $\left(\rho: D_{\mathrm{v}} \rightarrow \mathrm{GL}_{2}(R), \alpha(\phi),\left(\chi_{1}, \chi_{2}\right)\right)$ be a point of Spec $R_{\mathrm{v}}^{\square, \Delta}$ defined over an artinian local \mathscr{O}-algebra R (with residue field \mathbb{F}). Suppose that $\frac{\chi_{1}}{\chi_{2}}$ is neither trivial nor the cyclotomic character. Then the localisation of $R_{\mathrm{v}}^{\square, \Delta}$ at the prime ideal defined by ρ is regular.

Proof. Since the completion of $S_{\mathrm{v}}^{\square, \Delta}$ is $R_{\mathrm{v}}^{\square, \Delta}$, it suffices to establish that the localisation of $S_{\mathrm{v}}^{\square, \Delta}$ at ρ is regular. To this end, we apply Theorem 2.6 in [14] to $S_{\mathrm{v}}^{\square, \Delta}$. It remains to show that the prime ideal corresponding to ρ does not contain the ideal generated by the 1×1 minors, i.e. the ideal generated over \mathscr{O} by the $5\left[F_{\mathrm{v}}: \mathbb{Q}_{p}\right]+5$ variables. However, if it did contain the ideal, it follows that χ_{1} and χ_{2} would have to be equal (see the proof of Proposition 5 in [75]).

$2.4 S_{Q, N}$

Let N be an integer, assumed merely to be >1 if $p>2$ and assumed to be sufficiently large if $p=2$. For v in $S_{Q, N}$ we consider the 'Taylor-Wiles' primes. Suppose that v satisfies $\mathbf{N}_{F / \mathbb{Q}^{\mathrm{V}}} \equiv 1$ $\bmod p^{N}$. Suppose that $\bar{\rho}_{\mathrm{v}}$ is unramified, and is the direct sum of (unramified) characters $\bar{\chi}_{\mathrm{v}, 1}, \bar{\chi}_{\mathrm{v}, 2}$: $D_{\mathrm{v}} \rightarrow \mathbb{F}^{\times}$such that $\bar{\chi}_{\mathrm{v}, 1}\left(\mathrm{Frob}_{\mathrm{v}}\right)$ and $\bar{\chi}_{\mathrm{v}, 2}\left(\mathrm{Frob}_{\mathrm{v}}\right)$ are distinct. Then it follows from Hensel's lemma (see Lemma 2.44 in [25]) that every lifting ρ of $\bar{\rho}_{\mathrm{v}}$ is of the form $\rho=\chi_{\mathrm{v}, 1} \oplus \chi_{\mathrm{v}, 2}$ of $\bar{\rho}_{\mathrm{v}}$ such that $\chi_{\mathrm{v}, 1}$ (resp. $\chi_{\mathrm{v}, 2}$) lifts $\bar{\chi}_{\mathrm{v}, 1}$ (resp. $\bar{\chi}_{\mathrm{v}, 2}$) and $\chi_{\mathrm{v}, 2}$ is unramified. For a such v , we define the subspace $L_{\mathrm{v}} \subset H^{1}\left(D_{\mathrm{v}}\right.$, ad $\left.\bar{\rho}\right)=H^{1}\left(D_{\mathrm{v}}\right.$, ad $\left.\bar{\chi}_{\mathrm{v}, 1}\right) \oplus H^{1}\left(D_{\mathrm{v}}\right.$, ad $\left.\bar{\chi}_{\mathrm{v}, 2}\right)$ to be

$$
L_{\mathrm{v}}=H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\chi}_{\mathrm{v}, 1}\right) \oplus \operatorname{ker}\left(H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\chi}_{\mathrm{v}, 2}\right) \rightarrow H^{1}\left(I_{\mathrm{v}}, \operatorname{ad} \bar{\chi}_{\mathrm{v}, 2}\right)\right) .
$$

Existence of a set $S_{Q, N}$ of such 'Taylor-Wiles primes' will be proved case-by-case in the following.

$2.5 \quad S_{R}$ and S_{L}

Let v be a finite place of F not dividing p such that $\mathbf{N}_{F / \mathbb{Q} V} \equiv 1 \bmod p$. Suppose that

$$
\bar{\rho}_{\mathrm{v}}: D_{\mathrm{v}} \rightarrow \mathrm{GL}_{2}(\mathbb{F})
$$

is trivial. Let $\zeta=\left(\zeta_{1}, \zeta_{2}\right)$ be a pair of characters $D_{\mathrm{v}} \rightarrow \mathscr{O}^{\times}$such that the reduction $\bar{\zeta}_{1}: D_{\mathrm{v}} \rightarrow$ $\mathscr{O}^{\times} \rightarrow \mathbb{F}^{\times}\left(\right.$resp. $\left.\bar{\zeta}_{1}: D_{\mathrm{v}} \rightarrow \mathscr{O}^{\times} \rightarrow \mathbb{F}^{\times}\right)$of ζ_{1} (resp. ζ_{2}) is trivial.

We may and will define the quotient $R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square}, \zeta$ to be the maximally reduced and \mathscr{O}-flat quotient of R_{v}^{\square} such that, for any finite extension K of $L, \operatorname{Hom}_{L}\left(K, R_{\mathrm{v}} / I_{\mathrm{v}}^{\square, \zeta}\right)$ is in bijection with liftings $D_{\mathrm{v}} \rightarrow \mathrm{GL}_{2}\left(R_{\mathrm{v}}^{\square}\right) \rightarrow \mathrm{GL}_{2}(K)$ of the trivial representation of $\bar{\rho}_{\mathrm{v}}$ such that the semi-simplified restriction to the inertia subgroup at v is given by $\left(\begin{array}{cc}\zeta_{1} & 0 \\ 0 & \zeta_{2}\end{array}\right)$.

When ζ is trivial, i.e., both ζ_{1} and ζ_{2} are trivial, let $I_{\mathrm{v}}^{\square, S t}$ denote the ideal of R_{v}^{\square} containing $I_{\mathrm{v}}^{\square, \zeta}$ such that $R_{\mathrm{v}}^{\square} / I^{\square, \mathrm{St}}$ is reduced and \mathscr{O}-flat and $\operatorname{Hom}_{L}\left(K, R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square, \mathrm{St}}\right)$ parameterises the liftings
$\rho: D_{\mathrm{v}} \rightarrow \mathrm{GL}_{2}(K)$ of trivial representation $D_{\mathrm{v}} \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ which has inertial type $\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), N\right)$ for a non-trivial 2-by 2 matrix N of $\mathrm{GL}_{2}(L)$ in the sense of [78]. Note that the non-triviality of N forces the image by ρ of the arithmetic Frobenius lift σ in D_{v} to have two eigenvalues with ratio $\left|\mathbb{F}_{\mathrm{v}}\right|$, because $\rho_{\mathrm{WD}}(\sigma) N=\left|\mathbb{F}_{\mathrm{v}}\right| N \rho_{\mathrm{WD}}(\sigma)$.

Proposition 7. - $R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square, \zeta}$ is reduced, \mathscr{O}-flat, Cohen-Macaulay of equi-dimension 4 over \mathscr{O},

- Every irreducible component of Spec $R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square, \zeta}[1 / p]$ is formally smooth over L,
- $R_{\mathrm{v}}^{\square} /\left(I_{\mathrm{v}}^{\square, \zeta}, \lambda\right)$ is reduced,
- The generic point of every irreducible component of $R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square, \zeta}$ has characteristic zero.
- If ζ is distinct, then $R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square, \zeta}$ is geometrically irreducible of dimension 4 over \mathscr{O}.
- If ζ is trivial and L is sufficiently large, every minimal prime of $R_{\mathrm{v}}^{\square} /\left(I_{\mathrm{v}}^{\square, \zeta}, \lambda\right)$ contains a unique minimal prime of $R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square}, \zeta$.
- If ζ is trivial, the arithmetic rank $r\left(I_{\mathrm{v}}^{\square, \zeta}\right)$, in the sense of [11] for example, is 2 .

A similar set of statements holds for $R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square, S \mathrm{st}}$.
Proof. It follows from Exercise 18.13 in [36] and Proposition 5.8 (3) in [78] if $p>2$ and Corollary B. 10 in [77] if $p=2$ that $R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square, \zeta}$ is Cohen-Macaulay. When ζ is trivial, Spec $R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square, \zeta}$ is a union of two types of universal rings, one for unramified liftings and the other for Steinberg liftings. The fibre Spec $R_{\mathrm{v}}^{\square} /\left(I_{\mathrm{v}}^{\square, \zeta}, \lambda\right)$ is reduced since it is covered by reduced schemes (because of Proposition 5.8 (3) in [78] if $p>2$ and the proofs of Proposition B. 8 and Proposition B. 9 in [77] if $p=2$; and because a localisation of a reduced scheme remains reduced).

To prove the last statement, suppose that ζ is trivial. Let I_{v} denote the inertia subgroup of D_{v} at v and K_{v} denote the kernel of the projection of I_{v} onto its maximal pro-p quotient (of rank 1). The short exact sequence $1 \rightarrow I_{\mathrm{v}} / K_{\mathrm{v}} \rightarrow D_{\mathrm{v}} / K_{\mathrm{v}} \rightarrow D_{\mathrm{v}} / I_{\mathrm{v}} \rightarrow 1$ splits, and let τ (resp. σ) denote a topological generator of $I_{\mathrm{v}} / K_{\mathrm{v}} \simeq \mathbb{Z}_{p}\left(\right.$ resp. $\left.D_{\mathrm{v}} / I_{\mathrm{v}} \simeq \hat{\mathbb{Z}}\right)$. Since $\bar{\rho}_{\mathrm{v}}$ is trivial when restricted to K_{v}, so is any lifting $\rho: D_{\mathrm{v}} \rightarrow \mathrm{GL}_{2}(R)$ of $\bar{\rho}$ over an object R in \mathscr{C}; and ρ is determined by the images in $\mathrm{GL}_{2}(R)$ of $\boldsymbol{\tau}$ and σ, subject to the condition that $\sigma \tau \sigma^{-1}=\tau^{\left|\mathbb{F}_{\mathrm{v}}\right|}$. It therefore follows that $R_{\mathrm{v}}^{\square} / I^{\square, \zeta}$ is given by the quotient of a power series ring in $4+4$ variables with coefficients in \mathscr{O} by the radical \sqrt{I} of an ideal I generated by $2+4$ relations (2 because of the characteristic polynomial of $\rho(\tau)$ and 4 because of $\sigma \tau \sigma^{-1}=\tau^{|\overrightarrow{F r}|} \mid$. The ideal I is the intersection of two ideals- one corresponding to the 'unramified' liftings ρ with trivial $\rho(\sigma)$ and the other $I^{\square, \zeta, S t}$ corresponding to the 'Steinberg' liftings ρ with $\rho(\sigma)$ satisfying $\left|\mathbb{F}_{\mathrm{v}}\right|^{2}(\operatorname{tr} \rho(\sigma))^{2}=\left(\left|\mathbb{F}_{\mathrm{v}}\right|+1\right)^{2} \operatorname{det} \rho(\sigma)$. Since \sqrt{I} is the intersection of their radicals, \sqrt{I} defines $I_{\mathrm{v}}^{\square, \zeta}$ and $r\left(I^{\square, \zeta}\right)=r(I)=8-6=2$.

Let S_{R} (resp. S_{L}) denote the set of places v as in Proposition 7 with its corresponding deformation condition defined by the ideal $I_{\mathrm{v}}^{\square, \zeta} \subset R_{\mathrm{v}}^{\square}$ (resp. $I_{\mathrm{v}}^{\square, \mathrm{St}} \subset R_{\mathrm{v}}^{\square}$). As in [83], we will use the distinction between the cases- when ζ is trivial and when ζ is distinct- to 'avoid Ihara's lemma'.

$2.6 S_{A}$

Lemma 8. We may and will find a finite place v of F such that

- v does not divide p,
- if $p>2, \mathbf{N}_{F / \mathbb{Q} v}$ is not congruent to $1 \bmod p, \bar{\rho}_{\mathrm{v}}$ is unramified and $\bar{\rho}\left(\mathrm{Frob}_{\mathrm{v}}\right)$ is has equal eigenvalues,
- if $p=2, \bar{\rho}_{\mathrm{v}}$ is unramified and $\bar{\rho}\left(\right.$ Frob $\left._{\mathrm{v}}\right)$ has distinct eigenvalues.

For a such v , R_{v}^{\square} (i.e. $/ I_{\mathrm{v}}^{\square}=\varnothing$) parameterises the twists of unramified liftings of $\bar{\rho}_{\mathrm{v}}$ and it reduced and Cohen-Macaylay. Furthermore, $R_{\mathrm{v}}^{\square} /\left(\lambda, I_{\mathrm{v}}^{\square}\right)$ is reduced.

Proof. When $p>2$, see Proposition 5.5 (1) and Proposition 5.6 in (1) in [78]. When $p=2$, see the proof of Lemma 0.4 in [77]. Indeed, the assumptions on $\bar{\rho}\left(\right.$ Frob $\left.{ }_{\mathrm{v}}\right)$ force any lifting of $\bar{\rho}_{\mathrm{v}}$ is unramified (or equivalently, not of Steinberg type) up to twist.

We let S_{A} be a set of such primes v.

2.7 $\quad A_{\Sigma}^{\square}$ and B_{Σ}^{\square}

For every v in T, we let A_{v}^{\square} denote the quotient of R_{v} as defined above. In particular, we let

$$
A_{\Sigma_{p}}^{\square}=\left(\hat{\bigotimes}_{\mathrm{v} \in S_{p}} A_{\mathrm{v}}^{\square}\right) \hat{\bigotimes}_{\mathscr{O}\left[\left[\Delta_{p} \times \Delta_{p}\right]\right]} \Lambda .
$$

Let

$$
A_{\Sigma}^{\square}=A_{\Sigma_{p}}^{\square} \hat{\otimes} \hat{\bigotimes}_{v \in T-S_{p}} A_{\mathrm{v}}^{\square}
$$

and

$$
B_{\Sigma}^{\square}=A_{\Sigma_{p}}^{\square} \hat{\otimes} \hat{\bigotimes}_{\mathrm{v} \in T-\left(S_{p} \cup S_{R}\right)} A_{\mathrm{v}}^{\square}
$$

It follows from sections above that the set of minimal primes of B_{Σ}^{\square} is in bijection with the set of minimal primes of Λ. This plays a role in computing the connectedness dimension of R_{Σ} in Proposition 9.

$2.8 \quad \bar{\rho}$

Definition. For any object R in \mathscr{O}, a continuous irreducible representation $\operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(R)$ is said to be dihedral if it doe snot factor through any abelian quotient, but its restriction to $\operatorname{Gal}(\bar{F} / E)$ does for some quadratic extension E over F. If this is the case, we say that it is E dihedral.

Let

$$
S=S_{p} \cup S_{R} \cup S_{L} \cup S_{A} \cup S_{\infty}
$$

and suppose that $\left|S_{L} \cup S_{\infty}\right|$ is even. Suppose that $\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(\mathbb{F})$

- is unramified outside S,
- is trivial at every place in $S_{p} \cup S_{R} \cup S_{L}$
- is unramified at every place v in S_{A}; if $p>2$, we assume that $\mathbf{N}_{F / \mathbb{Q}^{\mathrm{V}}}$ is not congruent to $1 \bmod p$ and $\bar{\rho}\left(\right.$ Frob $\left._{\mathrm{v}}\right)$ has equal eigenvalues, while if $p=2$, we assume that $\bar{\rho}\left(\right.$ Frob $\left._{\mathrm{v}}\right)$ has distinct eigenvalues.

2.9 Connected dimension

Proposition 9. Suppose that ζ is trivial. For the connected dimension $c\left(R_{\Sigma}\right)$ of \boldsymbol{R}_{Σ} in the sense of [11] or [12],

$$
c\left(R_{\Sigma}\right) \geq[F: \mathbb{Q}]+\gamma_{F}-2\left|S_{R}\right|-1
$$

holds if $\bar{\rho}$ is not exceptional, while only

$$
c\left(R_{\Sigma}\right) \geq[F: \mathbb{Q}]+\gamma_{F}-2\left|S_{R}\right|-2
$$

holds if $\bar{\rho}$ is exceptional.
Proof. Since R_{Σ}^{\square} is a quotient of a power series in $\operatorname{dim}_{\mathbb{F}} H_{\Sigma}^{1}(F$, ad $\bar{\rho})$ variables over A_{Σ}^{\square} with $\operatorname{dim}_{\mathbb{F}} H_{\Sigma^{\perp}}^{1}(F, \operatorname{ad} \bar{\rho}(1))$ relations, it follows from Corollary 19.2.1 in [11] that

$$
\begin{aligned}
c\left(R_{\Sigma}^{\square}\right) & \geq c\left(A_{\Sigma}^{\square}\right)+\operatorname{dim}_{\mathbb{F}} H_{\Sigma}^{1}(F, \operatorname{ad} \bar{\rho})-\operatorname{dim}_{\mathbb{F}} H_{\Sigma \perp}^{1}(F, \operatorname{ad} \bar{\rho}(1))-1 \\
& =c\left(A_{\Sigma}^{\square}\right)+\operatorname{dim}_{\mathbb{F}} H_{\Sigma}^{0}\left(F_{S}, \operatorname{ad} \bar{\rho}\right)-\operatorname{dim}_{\mathbb{F}} H^{0}\left(F_{S}, \operatorname{ad} \bar{\rho}(1)\right)-[F: \mathbb{Q}]-1
\end{aligned}
$$

by Proposition 5, where $\operatorname{dim}_{\mathbb{F}} H_{\Sigma}^{0}\left(F_{S}\right.$, ad $\left.\bar{\rho}\right)=0$ and $\operatorname{dim}_{\mathbb{F}} H^{0}\left(F_{S}\right.$, ad $\left.\bar{\rho}(1)\right)=1$ (resp. 2) if $\bar{\rho}$ is not exceptional (resp. exceptional).

For a place v in $S_{R}, R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square, \zeta}$ (where ζ is trivial) admits a presentation as the quotient of a power series over \mathscr{O} with 8 variables by by 6 relations (Section 3 in [83]). It therefore follows that A_{Σ}^{\square} admits a presentation as the quotient of a power series over B_{Σ}^{\square} with $8\left|S_{R}\right|$ variables by $6\left|S_{R}\right|$ relations. By Proposition 1.8 in [89],

$$
c\left(A_{\Sigma}^{\square}\right) \geq c\left(B_{\Sigma}^{\square}\right)+\left(8\left|S_{R}\right|-6\left|S_{R}\right|\right)-1
$$

On the other hand, since the set of minimal primes in B_{Σ} and the set of minimal primes in Λ are in bijection, one concludes as in the proof of Lemma 3.21 in [89] that

$$
c\left(B_{\Sigma}^{\square}\right) \geq \operatorname{dim} B_{\Sigma}^{\square} / \lambda=\left(\operatorname{dim} A_{\Sigma}^{\square}-4\left|S_{R}\right|\right)-1
$$

Combining,

$$
c\left(A_{\Sigma}^{\square}\right) \geq \operatorname{dim} A_{\Sigma}^{\square}-2\left|S_{R}\right|-2=1+\left(1+2[F: \mathbb{Q}]+\gamma_{F}\right)+4|T|-2\left|S_{R}\right|-2
$$

It therefore follows that

$$
\begin{aligned}
c\left(R_{\Sigma}^{\square}\right) & \geq c\left(A_{\Sigma}^{\square}\right)-\operatorname{dim}_{\mathbb{F}} H^{0}\left(F_{S}, \operatorname{ad} \bar{\rho}(1)\right)-[F: \mathbb{Q}]-1 \\
& \geq\left(\left[2[F: \mathbb{Q}]+\gamma_{F}+4|T|-2\left|S_{R}\right|\right)-\operatorname{dim}_{\mathbb{F}} H^{0}\left(F_{S}, \operatorname{ad} \bar{\rho}(1)\right)-[F: \mathbb{Q}]-1\right. \\
& =[F: \mathbb{Q}]+\gamma_{F}+4|T|-2\left|S_{R}\right|-\operatorname{dim}_{\mathbb{F}} H^{0}\left(F_{S}, \operatorname{ad} \bar{\rho}(1)\right)-1
\end{aligned}
$$

and therefore

$$
\begin{aligned}
c\left(R_{\Sigma}\right) & \geq[F: \mathbb{Q}]+\gamma_{F}+4|T|-2\left|S_{R}\right|-\operatorname{dim}_{\mathbb{F}} H^{0}\left(F_{S}, \operatorname{ad} \bar{\rho}(1)\right)-1-(4|T|-1) \\
& =[F: \mathbb{Q}]+\gamma_{F}-2\left|S_{R}\right|-\operatorname{dim}_{\mathbb{F}} H^{0}\left(F_{S}, \text { ad } \bar{\rho}(1)\right)
\end{aligned}
$$

3 Modular forms and Hecke operators

Let D denote the quaternion algbera over F ramified exactly at $S_{L} \cup S_{\infty}$ (where $\left|S_{L} \cup S_{\infty}\right|$ is assumed to be even). Let G denote the algebraic group over F defined by D^{\times}. We fix a miximal order R of D once for all and, for every finite place v not in S_{L}, we fix an isomorphism $\left(R \otimes_{\mathscr{O}_{F}} \mathscr{O}_{F_{\mathrm{v}}}\right)^{\times} \simeq$ $\mathrm{GL}_{2}\left(\mathscr{O}_{F_{v}}\right)$.

Let $H=\operatorname{Hom}_{\mathbb{Q}}\left(F, \overline{\mathbb{Q}}_{p}\right)$ and $H_{\mathrm{v}}=\operatorname{Hom}_{\mathbb{Q}_{p}}\left(F_{\mathrm{v}}, \overline{\mathbb{Q}}_{p}\right)$ for every place v above p.
For every finite place v of F, the preimage by

$$
\operatorname{GL}_{2}\left(\mathscr{O}_{F_{\mathrm{v}}}\right) \rightarrow \mathrm{GL}_{2}\left(\mathscr{O}_{F_{\mathrm{v}}} / \mathrm{v}\right)=\mathrm{GL}_{2}\left(\mathbb{F}_{\mathrm{v}}\right)
$$

of the subgroup of upper triangular (resp. unipotent) matrices $\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right)$ (resp. $\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)$) in $\mathrm{GL}_{2}\left(\mathbb{F}_{\mathrm{v}}\right)$ will be denoted $B_{\mathrm{v}}\left(\right.$ resp. $\left.B_{\mathrm{v}}^{+}\right)$.

Fix a set ζ of characters $\left\{\zeta_{\mathrm{v}}=\left(\begin{array}{ll}\zeta_{\mathrm{v}, 1} & \\ & \zeta_{\mathrm{v}, 2}\end{array}\right): B_{\mathrm{v}} / B_{\mathrm{v}}^{+} \rightarrow \mathscr{O}^{\times}\right\}_{\mathrm{v} \in S_{R}}$ and a pair of tuples $(k, \ell) \in$ $\mathbb{Z}^{H} \times \mathbb{Z}^{H}$. Define $V_{(k, \ell)}^{\zeta}$ to be

$$
V_{(k, \ell)}^{\zeta}=\left(\bigotimes_{\mathrm{v} \in S_{p}} \bigotimes_{\tau \in H_{\mathrm{v}}} V_{\left(k_{r}, \ell_{\tau}\right)}\right) \otimes_{\mathscr{O}}\left(\bigotimes_{\mathrm{v} \in S_{R}} \mathscr{O}\left(\zeta_{\mathrm{v}}\right)\right)
$$

where $V_{\left(k_{r}, \ell_{\tau}\right)}$ denote the representation of $\mathrm{GL}_{2}\left(\mathscr{O}_{F_{v}}\right)$ on a finite free \mathscr{O}-module, with action of $\mathrm{GL}_{2}\left(\mathscr{O}_{F_{\mathrm{v}}}\right)$ defined in terms of the induction of the representation of the upper triangular Borel subgroup of weight $\left(\ell_{\tau}, k_{\tau}-2+\ell_{\tau}\right)$.

For an \mathscr{O}-algebra R, let $S_{(k, \ell)}^{\zeta}(R)$ denote the space of functions:

$$
f: G(F) \backslash G\left(\mathbb{A}_{F}^{\infty}\right) \rightarrow V_{(k, \ell)}^{\zeta} \otimes_{\mathscr{O}} R .
$$

If U is a subgroup of $G\left(\mathbb{A}^{\infty}\right)$ such that $U_{\mathrm{v}} \subseteq G\left(\mathscr{O}_{F_{\mathrm{v}}}\right)$ for every v in S_{p} and $U_{\mathrm{v}} \subseteq B_{\mathrm{v}}$ for v in S_{R}, we let U acts on $S_{(k, \ell)}^{\zeta}(R)$ by

$$
(\gamma f)(g)=\left(\gamma_{p \cup R}\right) f(g \gamma)
$$

where $\gamma_{p \cup R}$ is the projection of $\boldsymbol{\gamma}$ into the $S_{p} \cup S_{R}$-component.
Let $S_{(k, \ell)}^{\zeta}(U, R)$ denote the subset of functions f in $S_{(k, \ell)}^{\zeta}(R)$ such that $\boldsymbol{\gamma} f=f$ for every $\boldsymbol{\gamma}$ in U. When ζ is trivial, we simply write $S_{(k, \ell)}(U, R)$.

Let $U_{\Sigma_{\ell, N}}^{[r],+}$ (resp. $\left.U_{\Sigma_{Q, N}}^{[r]}\right)$ the open subgroup U of $G\left(\mathbb{A}^{\infty}\right)$ defined in terms of the deformation data $\Sigma_{Q, N}$ such that

- U_{v}, for v in S_{p}, is the subgroup of matrices in $G\left(\mathscr{O}_{F_{\mathrm{v}}}\right)=\mathrm{GL}_{2}\left(\mathscr{O}_{F_{\mathrm{v}}}\right)$ which reduce mod the r-th power of v to $\left(\begin{array}{ll}* & * \\ 0 & 1\end{array}\right)$.
- $U_{\mathrm{v}}=G\left(\mathscr{O}_{F_{\mathrm{v}}}\right)$ forv in S_{L},
- U_{v} is the pre-image, by $\mathrm{GL}_{2}\left(\mathscr{O}_{F_{\mathrm{v}}}\right) \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\mathrm{v}}\right)$, of the subgroup of matrices in $\mathrm{GL}_{2}(\mathbb{F})$ of the form $\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$ (resp. $\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)$) for v in $S_{R}\left(\right.$ resp. $\left.S_{A}\right)$.
- U_{v}, for v in $S_{Q, N}$, is the subgroup of matrices in $G\left(\mathscr{O}_{F_{\mathrm{v}}}\right)=\mathrm{GL}_{2}\left(\mathscr{O}_{F_{\mathrm{v}}}\right)$ which reduces mod v to $\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right)$ (resp. to $\left(\begin{array}{lc}* & * \\ 0 & \operatorname{ker}\left(\mathbb{F}_{v}^{\times} \rightarrow \Delta_{Q, v}\right)\end{array}\right)$ where $\Delta_{Q, v}$ is the maximal pro- p quotient of $\left.\mathbb{F}_{\mathrm{v}}^{\times}=\left(\mathscr{O}_{F} / \mathrm{v}\right)^{\times}\right)$.
By definition $U_{\Sigma_{Q, N}}^{[r]}$ is sufficiently small in the sense of Section 2.4 in [75] (see [75] and Lemma 3.2 in [70] when $p=2$) and

$$
U_{\Sigma_{Q, N}}^{[r],+} / U_{\Sigma_{Q, N}}^{[r]} \simeq \prod_{v \in S_{Q, N}} \Delta_{Q, v}
$$

For v not in S, we let T_{v} (resp. S_{v}) denote the Hecke operator acting on $S_{(k, \ell)}^{\zeta}(U, R)$ corresponding to $\left(\begin{array}{cc}\pi_{\mathrm{v}} & 0 \\ 0 & 1\end{array}\right)$ (resp. $\left(\begin{array}{cc}\pi_{\mathrm{v}} & 0 \\ 0 & \pi_{\mathrm{v}}\end{array}\right)$). The module $S_{(k, \ell)}^{\zeta}(U, R)$ also comes equipped with action of

- $U_{\mathrm{v}}\left(\right.$ resp. $\left.S_{\mathrm{v}}\right)$ for every place v above p corresponding to $\left(\begin{array}{cc}\pi_{\mathrm{v}} & 0 \\ 0 & 1\end{array}\right)$ (resp. $\left(\begin{array}{cc}\pi_{\mathrm{v}} & 0 \\ 0 & \pi_{\mathrm{v}}\end{array}\right)$) normalised by multiplying $\prod_{\tau \in H_{v}} \tau\left(\pi_{\mathrm{v}}\right)^{-\ell_{\tau}}$ (resp. $\prod_{\tau \in H_{\mathrm{v}}} \tau\left(\pi_{\mathrm{v}}\right)^{-\left(k_{\tau}+2 \ell_{\tau}-2\right)}$),
- for every place v above p, an element $t_{\mathrm{v}}=\left(\begin{array}{cc}t_{\mathrm{v}, 1} & \\ & t_{\mathrm{v}, 2}\end{array}\right)$ in the diagonal torus $\left(\begin{array}{cc}\mathscr{O}_{F_{\mathrm{v}}}^{\times} & 0 \\ 0 & \mathscr{O}_{F_{\mathrm{v}}}^{\times}\end{array}\right)$ naturally acts (without being normalised) and we follow Definition 2.23 in [42] to define

$$
\langle t\rangle=\prod_{\mathrm{v}} t_{\mathrm{v}, 2}^{-1} t_{\mathrm{v}}=\prod_{\mathrm{v}}\left(\begin{array}{cc}
t_{\mathrm{v}, 1} / t_{\mathrm{v}, 2} & \\
& 1
\end{array}\right)
$$

$$
\text { for } t=\left(t_{\mathrm{v}}\right) \text { in } \prod_{\mathrm{v}}\left(\begin{array}{cc}
\mathscr{O}_{F_{\mathrm{v}}}^{\times} & 0 \\
0 & \mathscr{O}_{F_{\mathrm{v}}}^{\times}
\end{array}\right)
$$

Let $T_{(k, \ell), \Sigma_{\ell, N}}\left(U_{\Sigma_{\ell, N}}^{[r]}, R\right)$ denote the Hecke algebra generated by the images in $\operatorname{End}_{R}\left(S_{(k, \ell)}^{\zeta}\left(U_{\Sigma_{\ell, N}}^{[r]}, R\right)\right)$ of T_{v} and S_{v} for v not in $S \cup S_{Q, N}, U_{\mathrm{v}}$ for v in S_{p} and the S_{τ}. When $R=\mathscr{O}$, we shall not make reference to R. When $k=2$ and $\ell=0$, write 2 in place of (k, ℓ).

For $R=\mathscr{O}$ or L / \mathscr{O}, Section 2.4 in [42] defines the Hida idempotent e on

$$
S_{(k, \ell)}^{\zeta}\left(U_{\Sigma_{Q, N}}^{[r]}, R\right)
$$

and

$$
T_{(k, \ell), \Sigma_{Q, N}}\left(U_{\Sigma_{Q, N}}^{[r]}, R\right),
$$

and we let

$$
e S^{\zeta}\left(U_{\Sigma_{\ell, N}}, R\right)=\lim _{r \rightarrow} S_{(k, \ell)}^{\zeta}\left(U_{\Sigma_{\ell, N}}^{[r]}, R\right)
$$

and

$$
e T_{\Sigma_{Q, N}}\left(U_{\Sigma_{Q, N}}, R\right)=\lim _{\leftarrow r} e T_{2, \Sigma_{Q, N}}\left(U_{\Sigma_{Q, N}}^{[r]}, R\right) .
$$

When $S_{Q, N}=\varnothing$, we simply write $e S^{\zeta}\left(U_{\Sigma}, R\right)$ and $e T_{\Sigma}\left(U_{\Sigma}, R\right)$ respectively. If $R=\mathscr{O}$, we make omit our reference to the coefficient R. Naturally, $e S^{\zeta}\left(U_{\Sigma_{Q, N}}\right)$ and $e T_{\Sigma_{Q, N}}\left(U_{\Sigma_{Q, N}}\right)$ are Λ algebras via \rangle.

When ζ is trivial and it is necessary for us to emphasise it, we omit the reference to ζ in the notation.

Given a maximal ideal of $e T_{\Sigma}\left(U_{\Sigma}\right)$ for the deformation data Σ in which the set of characters ζ is trivial, the congruence with $e S\left(U_{\Sigma}\right) / \lambda$ allows us to define the corresponding maximal ideal $\mathfrak{m} \subset e T_{\Sigma}\left(U_{\Sigma}\right)$ for any Σ as above (since ζ is trivial $\bmod \lambda$). Let $\mathfrak{m}_{Q, N}$ denote the pre-image of \mathfrak{m} by

$$
e T_{\Sigma_{\ell, N}}\left(U_{\Sigma_{\ell, N}}\right) \rightarrow e T_{\Sigma}\left(U_{\Sigma}\right)
$$

Lemma 10. - e $\left.S^{\zeta}\left(U_{\Sigma_{Q, N}}, L / O\right)\right)_{\mathfrak{m}_{Q, N}}^{\vee}$ is free over Λ of rank $\operatorname{dim}_{\mathbb{F}} e S_{2}\left(U_{\Sigma}^{[r]}, \mathbb{F}\right)$ for sufficiently large

r.

- $e S^{\zeta}\left(U_{\Sigma_{\ell, N}}, L / \mathscr{O}\right)_{\mathfrak{m}_{\ell, N}}^{\vee} / \mathfrak{m}_{\Lambda}$, where \mathfrak{m}_{Λ} is the maximal ideal of Λ, is isomorphic to $e S^{\zeta}\left(U_{\Sigma_{\ell, N}}^{[1]}, \mathbb{F}\right)_{\mathfrak{m}_{\ell, N}}^{\vee}$.

Proof. See Proposition 2.20 in [42] for the first assertion- essentially, it follows from $U_{\Sigma_{\ell, N}} \subset$ U_{Σ} being sufficiently small. The second assertion follows by definition.

Suppose that $\bar{\rho}$ is modular, in the sense that $\bar{\rho} \simeq \bar{\rho}_{\mathfrak{m}}$ for a non-Eisenstein maximal ideal \mathfrak{m} in $T_{\Sigma}\left(U_{\Sigma}\right)$. There exists a continuous representation

$$
\rho_{\Sigma_{\ell, N}}: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}_{2}\left(e T_{\Sigma_{Q, N}}\left(U_{\Sigma_{Q, N}}\right)_{\mathfrak{m}_{\ell, N}}\right)
$$

lifting $\bar{\rho}$, which is unramified outside $S \cup S_{Q, N}$ and which satisfies

$$
\operatorname{tr} \rho_{\Sigma_{Q, N}}\left(\text { Frob }_{\mathrm{v}}\right)=T_{\mathrm{v}}
$$

and

$$
\operatorname{det} \rho_{\Sigma_{\ell, N}}\left(\text { Frob }_{\mathrm{v}}\right)=\left(\mathbf{N}_{F / \mathbb{Q} \mathrm{v}}\right) S_{\mathrm{v}}
$$

for every v not lying in $S \cup S_{Q, N}$ (where Frob ${ }_{\mathrm{v}}$ is a geometric Frobenius lift).
For every v in $S_{Q, N}$, the restriction of $\rho_{\Sigma_{Q, N}}$ at v is a lifting of a direct sum of unramified characters $\bar{\chi}_{\mathrm{v}, 1}, \bar{\chi}_{\mathrm{v}, 2}: D_{\mathrm{v}} \rightarrow T_{\Sigma_{Q, N}}^{\times}$. Let α_{v} (resp. β_{v}) be a root in $e T_{\Sigma_{Q, N}}\left(U_{\Sigma_{\ell, N}}\right)_{m_{Q, N}}$ of the characteristic polynomial of $\rho_{\Sigma_{\ell, N}}\left(\right.$ Frob $\left._{v}\right)$, lifting $\bar{\chi}_{\mathrm{v}, 1}\left(\right.$ Frob $\left._{\mathrm{v}}\right)\left(\right.$ resp. $\bar{\chi}_{\mathrm{v}, 2}\left(\right.$ Frob $\left.\left._{\mathrm{v}}\right)\right)$ in \mathbb{F}; this is given by Hensel's lemma. We define a 'Hecke' operator

$$
U_{\pi}: e S^{\zeta}\left(U_{\Sigma_{Q, N}}^{[r]} L / \mathscr{O}\right)_{\mathfrak{m}_{Q, N}} \rightarrow e S^{\zeta}\left(U_{\Sigma_{Q, N}}^{[r]}, L / \mathscr{O}\right)_{\mathfrak{m}_{Q, N}}
$$

corresponding to the matrix $\left(\begin{array}{cc}1 & 0 \\ 0 & \pi\end{array}\right)$ where π is an element of F_{v} with non-negative valuation.
Define the quotient $H_{\Sigma_{Q, N}}^{\zeta}\left(U_{\Sigma_{\ell, N}}\right)$ of $e S^{\zeta}\left(U_{\Sigma_{Q, N}}, L / \mathscr{O}\right)_{\mathfrak{m}_{Q, N}}^{\vee}$ to be the Pontrjagin of the submodule

$$
H_{\Sigma_{Q, N}}^{\zeta}\left(U_{\Sigma_{Q, N}}\right)^{\vee}=\left(\prod_{\mathrm{v} \in S_{Q, N}}\left(U_{\pi_{\mathrm{v}}}-\beta_{\mathrm{v}}\right)\right) e S^{\zeta}\left(U_{\Sigma_{Q, N}}, L / \mathscr{O}\right)_{\mathfrak{m}_{Q, N}} \subset e S^{\zeta}\left(U_{\Sigma_{Q, N}}, L / \mathscr{O}\right)_{\mathfrak{m}_{Q, N}}
$$

(π_{v} is a uniformiser at v) cut out by the deformation data $\Sigma_{Q, N}$ and the local Langlands correspondence (see Section 4.2 in [42]). Analogously, one can define the quotient $e S^{\zeta}\left(U_{\Sigma_{Q, N}}^{+}, L / \mathscr{O}\right)_{\mathfrak{m}_{Q, N}}^{\vee} \rightarrow$ $H_{\Sigma_{Q, N}}^{\zeta}\left(U_{\Sigma_{Q, N}}^{+}\right)$with $U_{\Sigma_{Q, N}}^{[r],+}$ in place of $U_{\Sigma_{Q, N}}^{[r]}$.

We may define the quotient $H_{\Sigma_{Q, N}}^{\zeta}\left(U_{\Sigma_{Q, N}}^{[r]}, \mathscr{O} / \lambda^{s}\right)$ of $e S^{\zeta}\left(U_{\Sigma_{\ell, N}}, \mathscr{O} / \lambda^{s}\right)_{\mathfrak{m}_{\ell, N}}$ similarly; $H_{\Sigma_{Q, N}}^{\chi}\left(U_{\Sigma_{Q, N}}, \mathscr{O}\right)$ is the inverse limit of $H_{\Sigma_{Q, N}}^{\zeta}\left(U_{\Sigma_{\ell, N}}^{[r]}, \mathscr{O} / \lambda^{s}\right)$.

There exists a character

$$
\chi_{\mathrm{v}}: F_{\mathrm{v}}^{\times} \rightarrow\left(e T_{\Sigma_{\ell, N}}\left(U_{\Sigma_{\ell, N}}\right)_{\mathrm{m}_{\ell, N}}\right)^{\times}
$$

such that, for every π in F_{v} with non-negative valuation with respect to v , the operator U_{π} acts on $H_{\Sigma_{\ell, N}}\left(U_{\Sigma_{Q, N}}, \mathscr{O}\right)$ by $\chi_{\mathrm{v}}(\pi)$; and the restriction of $\rho_{\Sigma_{Q, N}}$ at v in $S_{Q, N}$ is of the form $\left(\chi_{\mathrm{v}} \circ \operatorname{Art}_{F_{\mathrm{v}}}^{-1}\right) \oplus$ $\chi_{\mathrm{v}, 2}$ where $\chi_{\mathrm{v}, 2}$ is an unramified lifting of $\bar{\chi}_{\mathrm{v}, 2}$.

Let

$$
T_{\Sigma_{Q, N}} \subset \operatorname{End}\left(H_{\Sigma_{Q, N}}^{\zeta}\right)
$$

denote the image of $T_{\Sigma_{Q, N}}\left(U_{\Sigma_{Q, N}}\right)_{\mathfrak{m}_{Q, N}}$ in $\operatorname{End}\left(H_{\Sigma_{Q, N}}^{\zeta}\right)$. When $S_{Q, N}=\varnothing$, we simply write T_{Σ} and H_{Σ}^{ζ} for $T_{\Sigma_{Q, N}}$ and $H_{\Sigma_{Q, N}}^{\zeta}$.

Let

$$
H_{\Sigma_{Q, N}}^{\square, \zeta}=H_{\Sigma_{Q, N}}^{\zeta} \otimes_{R_{\Sigma_{Q, N}}} R_{\Sigma_{Q, N}}^{\square}
$$

for which we write $H_{\Sigma}^{\square, \zeta}$ when $S_{Q, N}=\varnothing$.
By definition, $H_{\Sigma_{Q, N}}^{\zeta}\left(U_{\Sigma_{Q, N}}^{+}\right)$comes equipped with action of $U_{\Sigma_{Q, N}}^{[r],+} / U_{\Sigma_{Q, N}}^{[r]} \simeq \Delta_{Q, N}:=\prod_{v \in S_{Q, N}} \Delta_{Q, v}$.
Proposition 11. - $H_{\Sigma_{Q, N}}^{\zeta}\left(U_{\Sigma_{Q, N}}\right)$ is a finite free (hence flat) module over $\Lambda\left[\Delta_{Q, N}\right]$, and the coinvariants of $H_{\Sigma_{\ell, N}}^{\zeta}\left(U_{\Sigma_{\ell, N}}\right)$ by $\mathscr{O}\left[\Delta_{Q, N}\right]$ are $H_{\Sigma_{\ell, N}}^{\zeta}\left(U_{\Sigma_{Q, N}}^{+}\right)$.

- The map $\left(\prod_{v \in S_{Q, N}}\left(U_{\pi_{\mathrm{v}}}-\beta_{\mathrm{v}}\right)\right)^{\vee}: H_{\Sigma_{Q, N}}^{\zeta}\left(U_{\Sigma_{Q, N}}^{+}, \mathscr{O}\right) \rightarrow H_{\Sigma}^{\zeta}\left(U_{\Sigma}, \mathscr{O}\right)$, which sends $\phi \in$ $H_{\Sigma_{\ell, N}}^{\zeta}\left(U_{\Sigma_{\ell, N}}^{+}, \mathscr{O}\right)=\operatorname{Hom}_{\mathscr{O}}\left(H_{\Sigma_{\ell, N}}\left(U_{\Sigma_{\ell, N}}\right)^{\vee}, L / \mathscr{O}\right)$ to the continuous homomorphism
is an isomorphism.
Proof. See Lemma 4.9 in [42]. For the second assertion, see also Lemma 3.2.2 in [22].

$4 \bar{\rho}$ is irreducible with insoluble image

Suppose that $p>2$.
Lemma 12. Suppose that $\bar{\rho}$ is absolutely irreducible when restricted to $\operatorname{Gal}\left(\bar{F} / F\left(\zeta_{p}\right)\right)$. If $p=5$ and the projective image of $\bar{\rho}$ is isomorphic to $\mathrm{PGL}_{2}\left(\mathbb{F}_{5}\right)$, we furthermore assume that the kernel of the projective representation of $\bar{\rho}$ does not fix $F\left(\zeta_{5}\right)$. For every $N \geq 1$, there exists a finite set $S_{Q, N}$ of finite places v of F such that

- $\mathbf{N}_{F / \mathbb{Q}} \equiv 1 \bmod p^{N}$,
- $\bar{\rho}_{\mathrm{v}}$ is a direct sum of distinct unramified characters,
- $\left|S_{Q, N}\right|=q=\operatorname{dim}_{\mathbb{F}} H_{\Sigma^{\perp}}^{1}(F, \operatorname{ad} \bar{\rho}(1))$, i.e. $\left|S_{Q, N}\right|$ is independent of N,
- if we let $\Sigma_{Q, N}$ denote the deformation data

$$
\left(S \cup S_{Q, N}, T, \ldots,\right),
$$

then $R_{\Sigma_{Q, N}}$ is topologically generated over A_{Σ}^{\square} by $r=q-[F: \mathbb{Q}]-1$ elements.
Proof. This is standard and follows from Proposition 5. See [75].
Suppose that $p=2$. Let $F_{N}=F\left(\zeta_{2^{N}}\right)$ and K be the subfield of $\overline{\boldsymbol{F}}$ fixed by ker ad $\bar{\rho}$. Let K_{N} denote the compositum of K and F_{N}.

Definition. Let N_{kw} be the largest integer amongst those $N \geq 2$ such that the totally real subfield of F_{N} is contained in F.

We have an inflation-restriction exact sequence:

$$
\rightarrow H^{0}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right), \operatorname{ad} \bar{\rho}(1) / \mathbb{F}\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(F_{N} / F\right), \mathbb{F}\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right), \operatorname{ad} \bar{\rho}(1)\right) \rightarrow
$$

and if $\bar{\rho}$ is irreducible with insoluble image, $H^{0}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right)\right.$, ad $\left.\bar{\rho}(1) / \mathbb{F}\right)=0$ (Lemma 4.3 in [56]).
Recall, by definition, $H_{\Sigma \perp}^{1}\left(F_{S}\right.$ ad $\left.\bar{\rho}(1)\right)$ to be the kernel of

$$
H^{1}\left(\operatorname{Gal}\left(F_{S} / F\right), \operatorname{ad} \bar{\rho}(1)\right) \rightarrow \bigoplus_{\mathrm{v}} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}(1)\right) / L_{\mathrm{v}}^{\perp}
$$

where the direct sum ranges over the union of S_{∞} and $S_{Q, N}$; at every infinite place v of F, we have

$$
L_{\mathrm{v}}^{\perp}=\left(H^{1}\left(D_{\mathrm{v}}, \text { ad } \bar{\rho}(1)\right) / L_{\mathrm{v}}\right)^{\vee} \subset H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}(1)\right)^{\vee}=H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}(1)\right),
$$

with

$$
= \begin{cases}\operatorname{dim}_{\mathbb{F}} L_{\mathrm{v}}^{\perp} \\ 0 & \text { if } \bar{\rho}_{\mathrm{v}} \text { is non-trivial }, \\ 1 & \text { if } \bar{\rho}_{\mathrm{v}} \text { is trivial, }\end{cases}
$$

while at v in $S_{Q, N}$, we have $L_{\mathrm{v}}^{\perp}=H^{1}\left(D_{\mathrm{v}}, \text { ad } \bar{\rho}\right)^{\perp}$. Parenthetically, it follows from the local Euler characteristic formula and the local duality, one sees $\operatorname{dim} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}(1)\right)=\operatorname{dim} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)$ is 0 (resp. 4) if $\bar{\rho}_{\mathrm{v}}$ is non-trivial (resp. trivial).

Definition. As in Section 2, we define $H_{\Sigma_{Q, N}}^{1}\left(F_{S}, \mathbb{F}\right)$ to be the subspace of $H^{1}\left(\operatorname{Gal}\left(F_{S} / F\right), \mathbb{F}\right)$ defined by local conditions $L_{v}=H^{1}\left(D_{\mathrm{v}}, \mathbb{F}\right)$ at S_{∞} and $S_{Q, N}$ (whether v is finite or not). It follows from local Tate duality that, for infinite v , we have

$$
\begin{aligned}
& = \begin{cases}\operatorname{dim}_{\mathbb{F}} L_{\mathrm{v}} \\
0 & \text { if } \bar{\rho}_{\mathrm{v}} \text { is non-trivial }, \\
1 & \text { if } \bar{\rho}_{\mathrm{v}} \text { is trivial, }\end{cases}
\end{aligned}
$$

As in Section 2, we define the dual Selmer group $H_{\Sigma_{\bar{Q}, N}^{\perp}}^{1}\left(F_{S}, \mathbb{F}\right)$ as the kernel of

$$
H^{1}\left(\operatorname{Gal}\left(F_{S} / F\right), \mathbb{F}\right) \rightarrow \bigoplus_{\mathrm{v}} H^{1}\left(D_{\mathrm{v}}, \mathbb{F}\right) / L_{\mathrm{v}}^{\perp}
$$

where v ranges over S_{∞} and $S_{Q, N}$. The dimension $\operatorname{dim}_{\mathbb{F}} H_{\Sigma_{Q, N}}^{1}\left(F_{S}, \mathbb{F}\right)$ is computed as

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{F}} H_{\Sigma_{\emptyset, N}^{1}}^{1}\left(F_{S}, \mathbb{F}\right)+H^{0}\left(F_{S}, \mathbb{F}\right)-H^{0}\left(F_{S}, \mathbb{F}(1)\right) \\
+ & \sum_{\mathrm{v} \in S_{\infty}} \operatorname{dim}_{\mathbb{F}} L_{\mathrm{v}}-\left[\operatorname{dim}_{\mathbb{F}} H^{0}\left(D_{\mathrm{v}}, \mathbb{F}\right)-\mathbf{N}_{\bar{F}_{\mathrm{v}} / F_{\mathrm{v}}} H^{0}\left(D_{\mathrm{v}}, \mathbb{F}\right)\right]+\sum_{\mathrm{v} \in S_{Q, N}} H^{1}\left(D_{\mathrm{v}}, \mathbb{F}\right)-H^{0}\left(D_{\mathrm{v}}, \mathbb{F}\right) \\
= & \operatorname{dim}_{\mathbb{F}} H_{\Sigma_{\bar{Q}, N}^{1}}^{1}\left(F_{S}, \mathbb{F}\right)+\left|S_{Q, N}\right| .
\end{aligned}
$$

By definition, $H_{\Sigma_{\ell, N}^{\perp}}^{1}\left(F_{S}, \mathbb{F}\right)$ maps to $\operatorname{dim}_{\mathbb{F}} H_{\Sigma_{\ell, N}^{\perp}}^{1}\left(F_{S}\right.$, ad $\left.\bar{\rho}(1)\right)$, and they are isomorphic if $\bar{\rho}$ is irreducible with insoluble image (as observed above); in particular, under the assumption,

$$
\operatorname{dim}_{\mathbb{F}} H_{\Sigma \sum_{Q, N}^{\perp}}^{1}\left(F_{S}, \mathbb{F}\right)=\operatorname{dim}_{\mathbb{F}} H_{\Sigma \varrho, N}^{1}\left(F_{S}, \operatorname{ad} \bar{\rho}(1)\right) .
$$

Lemma 13. Suppose that $\bar{\rho}$ has insoluble image. For every $N \geq N_{\mathrm{kw}}$, there exists a finite set $S_{Q, N}$ of finite places v of F such that

- $\mathbf{N}_{F / \mathbb{Q}} \equiv 1 \bmod p^{N}$,
- $\bar{\rho}_{\mathrm{v}}$ is a direct sum of distinct unramified characters,
- $\left|S_{Q, N}\right|=q$, where $q=\operatorname{dim}_{\mathbb{F}} H_{\Sigma^{\perp}}^{1}(F, \operatorname{ad} \bar{\rho}(1))-2$,
- if we let $\Sigma_{Q, N}$ denote the deformation data

$$
\left(S \cup S_{Q, N}, T, \ldots,\right),
$$

then $R_{\Sigma_{Q, N}}$ is topologically generated over A_{Σ}^{\square} by $r=2 q-[F: \mathbb{Q}]+1$ elements.
Proof. Because $p=2$, the adjoint representation ad $\bar{\rho}$ is self-dual, i.e., $\operatorname{ad} \bar{\rho}(1) \simeq \operatorname{ad} \bar{\rho}$. Since $\bar{\rho}$ has insoluble image,

$$
H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), \operatorname{ad} \bar{\rho}(1)\right)=0
$$

(see Lemma 4.3 in [56] for example).
Suppose that ϕ is a class in $H^{1}\left(\operatorname{Gal}\left(F_{S} / F\right)\right.$, ad $\left.\bar{\rho}(1)\right)$ which has a non-trivial restriction in $H^{1}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right), \operatorname{ad} \bar{\rho}(1)\right)$, and therefore in $H^{1}\left(\operatorname{Gal}\left(F_{S} / K_{N}\right), \operatorname{ad} \bar{\rho}(1)\right)$. In this case, we have

$$
0 \rightarrow H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), \operatorname{ad} \bar{\rho}(1)\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right), \operatorname{ad} \bar{\rho}(1)\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(F_{S} / K_{N}\right), \operatorname{ad} \bar{\rho}(1)\right),
$$

where $H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), \operatorname{ad} \bar{\rho}(1)\right)=0$ and $H^{1}\left(\operatorname{Gal}\left(F_{S} / K_{N}\right), \operatorname{ad} \bar{\rho}(1)\right)=\operatorname{Hom}\left(\operatorname{Gal}\left(F_{S} / K_{N}\right), \operatorname{ad} \bar{\rho}(1)\right)$.
In particular, $\phi\left(\operatorname{Gal}\left(F_{S} / K_{N}\right)\right)$ is a non-trivial $\operatorname{Gal}\left(K_{N} / F_{N}\right)$-submodule of ad $\bar{\rho}(1)$. One may then find an element γ of $\operatorname{Gal}\left(K_{N} / F_{N}\right)$, hence of $\operatorname{Gal}\left(F_{S} / F_{N}\right)$, satisfying the property that given a non-trivial irreducible $\operatorname{Gal}\left(K_{N} / F_{N}\right)$-module Z (the scalars in $M_{2}(\mathbb{F})$) of ad $\bar{\rho}$, the image ad $\bar{\rho}(\gamma)$ of $\boldsymbol{\gamma}$ has an eigenvalue other than 1 and has an eigenvalue 1 on \boldsymbol{Z}. It then follows that, either $\boldsymbol{\gamma}$ or its shift by an element of $\phi\left(\operatorname{Gal}\left(F_{S} / K_{N}\right)\right)$ satisfies the condition that $\phi(\gamma)$ is not contained in $(\gamma-1)$ ad $\bar{\rho}$. By the Cebotarev density theorem, $\boldsymbol{\gamma}$ gives rise to a finite place v of \boldsymbol{F} such that

- γ equals Frob $_{v}$ (up to conjugacy),
- $\mathbf{N}_{F / \mathbb{Q}^{V}} \equiv 1 \bmod p^{N}$,
- v splits completely in F_{N},
- $\bar{\rho}_{\mathrm{v}}$ is the direct sum of character $\bar{\chi}_{\mathrm{v}, 1}$ and $\bar{\chi}_{\mathrm{v}, 2}$ and the restriction of ϕ at v lies non-trivially in

$$
H^{1}\left(D_{\mathrm{v}} / I_{\mathrm{v}}, \text { ad } \bar{\chi}_{\mathrm{v}, 1}(1)\right)=H^{1}\left(D_{\mathrm{v}} / I_{\mathrm{v}}, \text { ad } \bar{\rho}(1)\right) / L_{\mathrm{v}}^{\perp} \simeq \mathbb{F}
$$

We apply the argument repeatedly to an \mathbb{F}-basis of $H_{\Sigma^{\perp}}^{1}(F$, ad $\bar{\rho}(1)) \subset H^{1}\left(\operatorname{Gal}\left(F_{S} / F\right)\right.$, ad $\left.\bar{\rho}(1)\right)$ that restricts to a non-trivial class in $H^{1}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right)\right.$ ad $\left.\bar{\rho}(1)\right)$. The resulting subspace $H_{\Sigma \stackrel{\perp}{Q, N}}^{1}(F$, ad $\bar{\rho}(1))$ of $H_{\Sigma^{\perp}}^{1}(F$, ad $\bar{\rho}(1))$ therefore lies in the kernel of $H^{1}\left(\operatorname{Gal}\left(F_{S} / F\right)\right.$, ad $\left.\bar{\rho}(1)\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right)\right.$, ad $\left.\bar{\rho}(1)\right)$; and the latter is isomorphic to $H^{1}\left(F_{N}, \mathbb{F}\right)$ by inflation-restriction, and $\operatorname{dim}_{\mathbb{F}} H^{1}\left(\operatorname{Gal}\left(F_{N} / F\right), \mathbb{F}\right)=$ 2 for $N>N_{\mathrm{kw}}$, since the maximal elementary abelian 2-quotient of $\operatorname{Gal}\left(F_{N} / F\right)$ is of rank 2 .

One can indeed establish that $H_{\Sigma_{Q, N}^{\perp}}^{1}(F$, ad $\bar{\rho}(1))$ equals the kernel $H^{1}\left(\operatorname{Gal}\left(F_{N} / F\right), \mathbb{F}\right)$; this is in stark contrast to the setting in [87] whose Proposition 2.21 observes $H_{\Sigma{ }_{Q, N}^{\perp}}^{1}(F, \operatorname{ad} \bar{\rho}(1))$ is strictly contained in $H^{1}\left(\operatorname{Gal}\left(F_{N} / F\right), \mathbb{F}\right)$ albeit under the assumption that there is at least one infinite place v at which $\bar{\rho}$ is non-trivial. To see the equality in our setting, we observe, for every infinite place v, the image of

$$
H^{1}\left(\operatorname{Gal}\left(F_{N} / F\right), \mathbb{F}\right) \rightarrow H^{1}\left(D_{\mathrm{v}}, \mathbb{F}\right) \xrightarrow{f} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)
$$

(F_{N} is no longer totally real) lies in L_{v}^{\perp}. It suffices to show that the image $\operatorname{Im}(f)$ of f equals L_{v}^{\perp}. As f is part of the exact sequence

$$
\rightarrow H^{1}\left(D_{\mathrm{v}}, \mathbb{F}\right) \xrightarrow{f} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right) \xrightarrow{g} H^{1}\left(D_{\mathrm{v}},(\operatorname{ad} \bar{\rho}) / \mathbb{F}\right) \rightarrow
$$

with dual
$\leftarrow H^{1}\left(D_{\mathrm{v}}, \mathbb{F}\right) \stackrel{f^{\vee}}{\leftarrow} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right) \stackrel{g^{\vee}}{\leftarrow} H^{1}\left(D_{\mathrm{v}},(\operatorname{ad} \bar{\rho}) / \mathbb{F}\right)^{\vee}=H^{1}\left(D_{\mathrm{v}},\left(\operatorname{ad}^{0} \bar{\rho}\right)^{\vee}(1)\right)=H^{1}\left(D_{\mathrm{v}}, \operatorname{ad}^{0} \bar{\rho}\right) \leftarrow$ we see that $\operatorname{Im}(f)^{\perp}=\operatorname{coker}(f)=\operatorname{ker}\left(f^{\vee}\right)=\operatorname{Im}\left(g^{\vee}\right)=L_{\vee}$.

For v in $S_{Q, N}$,
$\operatorname{dim} L_{\mathrm{v}}-\operatorname{dim}_{\mathbb{F}} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)=\operatorname{dim} H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)-\operatorname{dim}_{\mathbb{F}} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)=\operatorname{dim}_{\mathbb{F}} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \bar{\rho}\right)=2$ It then follow from Proposition 5 that $\operatorname{dim}_{\mathbb{F}} H_{\Sigma_{Q, N}}^{1}(F$, ad $\bar{\rho})$ is computed by $\operatorname{dim}_{\mathbb{F}} H_{\Sigma_{Q, N}}^{1}(F$, ad $\bar{\rho}(1))-$ $1+2\left|S_{Q, N}\right|-[F: \mathbb{Q}]=2-1+2 q-[F: \mathbb{Q}]=2 q-[F: \mathbb{Q}]+1$, where $\left|S_{Q, N}\right|=q=$ $\operatorname{dim}_{\mathbb{F}} H_{\Sigma^{\perp}}^{1}(F$, ad $\bar{\rho}(1))-\operatorname{dim}_{\mathbb{F}} H_{\Sigma_{Q}, N}^{1}(F$, ad $\bar{\rho}(1))=\operatorname{dim}_{\mathbb{F}} H_{\Sigma^{\perp}}^{1}(F$, ad $\bar{\rho}(1))-2$.

Definition. When $p=2$, we let $\nabla_{Q, N}$ denote the group of characters of the Galois group of the maximal abelian pro- p extension of F un ramified outside $S_{Q, N}$ which are deformations/liftings of the trivial character over \mathbb{F}. This acts freely on $R_{\Sigma_{Q, N}}$ 'by twisting'. As observed in Lemma 5.10 of [56], $\nabla_{Q, N}$ has rank $\operatorname{dim}_{\mathbb{F}} H_{\Sigma_{Q, N}}^{1}\left(F_{S}, \mathbb{F}\right)$; if we let ∇_{Q} denote the \mathscr{O}-algebra of $\operatorname{dim}_{\mathbb{F}} H_{\Sigma_{Q, N}}^{1}\left(F_{S}, \mathbb{F}\right)$ copies of \mathbb{Z}_{p}, then we have a surjection $\nabla_{Q} \rightarrow \nabla_{Q, N}$.

Definition. By slight abuse of notation, we let $R_{\Sigma_{Q, N}}^{\square} / \nabla_{Q, N}$ denote the subring of elements in $R_{\Sigma_{Q, N}}$ which are invariant under action of $\nabla_{Q, N}$. By definition,

$$
\operatorname{dim} R_{\Sigma_{Q, N}}^{\square} / \nabla_{Q, N}=\operatorname{dim} R_{\Sigma_{Q, N}}^{\square}-\operatorname{dim}_{\mathbb{F}} H_{\Sigma_{Q, N}}^{1}\left(F_{S}, \mathbb{F}\right)=\operatorname{dim} R_{\Sigma_{Q, N}}^{\square}-\left(2+\left|S_{Q, N}\right|\right)
$$

Following Lemma 12 and Lemma 13, we let $A_{\Sigma_{\ell}}^{\square}$ denote the formal power series ring over A_{Σ}^{\square} with r variables, with the variable chosen such that $R_{\Sigma_{Q, N}}$ is a quotient of $A_{\Sigma_{Q}}$:

$$
A_{\Sigma_{Q}}^{\square} \rightarrow R_{\Sigma_{Q, N}}^{\square}
$$

If $p=2$, we furthermore let $A_{\Sigma_{Q}}^{\square, \nabla}$ denote the formal power series ring over A_{Σ}^{\square} with $r-(2+q)$ variables, similarly defining a surjection

$$
A_{\Sigma_{\ell}^{\square, ~}}^{\square, \nabla} \rightarrow R_{\Sigma_{Q, N}}^{\square} / \nabla_{Q, N}
$$

Let Δ_{Q} be the free \mathbb{Z}_{p}-module \mathbb{Z}^{q} of $\operatorname{rank} q$. For every N, Δ_{Q} surjects onto

$$
\Delta_{Q, N}=\prod_{\mathrm{v} \in S_{Q, N}} \Delta_{\mathrm{v}} .
$$

Fix an isomorphism

$$
\Lambda\left[\left[\Delta_{Q}\right]\right] \simeq \Lambda\left[\left[S_{1}, \ldots, S_{q}\right]\right] .
$$

Let J denote the kernel of

$$
\Lambda \hat{\otimes} R^{\square}\left[\left[\Delta_{Q}\right]\right]=\Lambda \hat{\otimes} R^{\square}\left[\left[S_{1}, \ldots, S_{q}\right]\right] \rightarrow \Lambda
$$

which sends every variable in Δ_{Q} to 1 and all $4|T|-1$ variables in R^{\square} to 0 .
Lemma 14. Let \triangle be a minimal ideal of Λ.

- If ζ is distinct (i.e. for every v in $S_{R}, \zeta_{\mathrm{v}, 1}$ and $\zeta_{\mathrm{v}, 2}$ are distinct), then $\operatorname{Spf} A_{\Sigma}^{\square} \otimes \Lambda / \triangle$ is \mathscr{O}-flat and geometrically irreducible of relative dimension over \mathscr{O}

$$
1+2[F: \mathbb{Q}]+\gamma_{F}+4|T| .
$$

- If ζ is trivial (i.e. for every v in $S_{R}, \zeta_{\mathrm{v}, 1}$ and $\zeta_{\mathrm{v}, 2}$ both trivial) and if L is sufficiently large, then $\operatorname{Spf} A_{\Sigma}^{\square} \Lambda / \triangle$ is equi-dimensional of relative dimension over \mathscr{O}

$$
1+2[F: \mathbb{Q}]+\gamma_{F}+4|T| .
$$

Furthermore,

- every minimal prime of $A_{\Sigma}^{\square} \otimes \Lambda /(\triangle, \lambda)$ contains a unique prime of $A_{\Sigma}^{\square} \otimes \Lambda / \triangle$,
- A_{Σ}^{\square} is \mathscr{O}-flat and Cohen-Macaulay,
- A_{Σ} / λ is generically reduced.

Proof. This follows from Section 2. See Lemma 9 in [75].
Let $H_{\Sigma_{\ell, N}}^{\square}=H_{\Sigma_{Q, N}} \otimes_{\mathscr{O}} R^{\square}$, and $T_{\Sigma_{Q, N}}^{\square}=T_{\Sigma_{\ell, N}} \otimes_{\mathscr{O}} R^{\square}$ where $T_{\Sigma_{Q, N}}$ is defined as in Section 3. The Taylor-Wiles 'level N-modules'

if $p>2$ and $R_{\Sigma_{Q, N}}^{\square} / \nabla_{Q, N}\left(\right.$ resp. $\left.A_{\Sigma_{Q}}^{\square, \nabla^{2}}\right)$ in place of $R_{\Sigma_{Q, N}}^{\square}$ (resp. $A_{\Sigma_{Q}}^{\square}$) if $p=2$; and they 'patch' together to define

if $p>2$ and

Remark. When $p=2$, action of ∇_{Q} is 'twist' by global characters, whilst action of Δ_{Q} manifests itself as the 'diamond' operator.

Lemma 15.

$$
H_{\Sigma_{\ell}, \nabla}^{\square} / J \simeq H_{\Sigma}
$$

Proof. Standard.
Theorem 16. $H_{\Sigma_{Q}}^{\square}$, with trivial ζ, is a faithful module over $A_{\Sigma_{Q}}^{\square}$.
Proof. We sketch a proof, which is based on one for the similar assertion in [75]. Firstly, suppose that $p>2$. When ζ is distinct, for every minimal prime Δ of Λ, the Krull-dimension of irreducible $A_{\Sigma_{\Omega}} / \triangle$ is

$$
\begin{aligned}
& 1+r+\left(1+2[F: \mathbb{Q}]+\gamma_{F}\right)+4|T| \\
= & 1+(q-[F: \mathbb{Q}]-1)+\left(1+2[F: \mathbb{Q}]+\gamma_{F}\right)+4|T| \\
= & 1+q+[F: \mathbb{Q}]+\boldsymbol{\gamma}_{F}+4|T| .
\end{aligned}
$$

On the other hand, the $A_{\Sigma_{Q}}^{\square}$-depth of $H_{\Sigma_{Q}}^{\square} / \triangle$ is at least the $\Lambda \hat{\otimes} R^{\square}\left[\left[\Delta_{Q}\right]\right]$-depth of $H_{\Sigma_{Q}}^{\square} / \triangle$; as $H_{\Sigma_{\ell}}^{\square} / \triangle$ is free as a $\left(\Lambda \hat{\otimes} R^{\square}\left[\left[\Delta_{Q}\right]\right] / \triangle\right)$-module, the latter equals the Krull-dimension of $\Lambda \hat{\otimes} R^{\square}\left[\left[\Delta_{Q}\right]\right]$ which is greater than or equal to

$$
\begin{aligned}
& 1+\left(1+[F: \mathbb{Q}]+\gamma_{F}\right)+4|T|-1+q \\
= & 1+q+[F: \mathbb{Q}]+\gamma_{F}+4|T| .
\end{aligned}
$$

For a minimal prime \triangle as above, it follows from Lemma 2.3 in [83] that $H_{\Sigma_{\Omega}}^{\square} / \triangle$ is a nearly faithful module over $A_{\Sigma_{\Omega}}^{\square} / \triangle$ when ζ is distinct. By Lemma 2.2, 1, [83], $H_{\Sigma_{\Omega}} /(\triangle, \lambda)$ is a nearly faithful $A_{\Sigma_{Q}}^{\square} /(\triangle, \lambda)$-module when ζ is trivial. It then follows from Lemma 2.2, 2, [83], $H_{\Sigma_{Q}}^{\square} / \triangle$ is a nearly faithful $A_{\Sigma_{Q}} / \triangle$-module when ζ is trivial. As this holds for any minimal prime $\triangle, H_{\Sigma_{Q}}$ is a nearly faithful $A_{\Sigma_{Q}}^{\square}$-module when ζ is trivial.

On the other hand, p and the generators of J define a system of parameters of $A_{\Sigma_{Q}}$, which indeed is a regular sequence since $A_{\Sigma_{Q}}^{\square}$ is Cohen-Macaulay. It therefore follows that $A_{\Sigma_{Q}} / \lambda$ is reduced and the regularity of λ then establishes that $A_{\Sigma_{Q}}$ is reduced. It follows that $H_{\Sigma_{Q}}^{\square}$ is indeed a faithful module over $A_{\Sigma_{Q}}$.

If $p=2$, the Krull-dimension of $A_{\Sigma_{Q}}^{\square} / \triangle$ is

$$
\begin{aligned}
& 1+(r-2-q)+\left(1+2[F: \mathbb{Q}]+\gamma_{F}\right)+4|T| \\
= & 1+(2 q-[F: \mathbb{Q}]+1-2-q)+\left(1+2[F: \mathbb{Q}]+\gamma_{F}\right)+4|T| \\
= & 1+q+[F: \mathbb{Q}]+\gamma_{F}+4|T| ;
\end{aligned}
$$

and the $A_{\Sigma_{Q}}^{\square, \nabla^{2}}$-depth of $H_{\Sigma_{Q}}^{\square} / \triangle$ is again at least the $\Lambda \hat{\otimes} R^{\square}\left[\left[\Delta_{Q}\right]\right]$-depth of $H_{\Sigma_{Q}}^{\square} / \triangle$. The rest follows similarly.

Corollary 17. $R_{\Sigma_{Q}}^{\square} / J \simeq R_{\Sigma}$ is reduced and H_{Σ} is a faithful $R_{\Sigma \text {-module. In particular, }} R_{\Sigma} \simeq T_{\Sigma}$.
Proof. See [75]. The outline of the proof in [75] is as follows. Firstly, since $H_{\Sigma_{Q}}^{\square}$ is a faithful $A_{\Sigma_{Q}}^{\square}$-module and $A_{\Sigma_{Q}}^{\square} / J$ is isomorphic to R_{Σ}, it follows from Lemma 2.2 in [83] that $H_{\Sigma_{Q}}^{\square} / J$ is a nearly faithful $R_{\Sigma} \simeq A_{\Sigma_{Q}} / J$-module. Therefore it suffices to prove that $A_{\Sigma_{Q}} / J$ is reduced. To prove that $A_{\Sigma_{Q}}^{\square} / J$ is reduced, one observes that $\left(A_{\Sigma_{Q}}^{\square} / J\right)[1 / p]$ is generically reduced; indeed, one can make appeal to Lemma 18 below to prove that the localisation of $\left(A_{\Sigma_{Q}} / J\right)[1 / p]$ at its (any) minimal ideal, containing J and p, is reduced. As $A_{\Sigma_{Q}} / J$ is Cohen-Macaulay, so is $\left(A_{\Sigma_{Q}} / J\right)[1 / p]$, and therefore it is reduced. Since $A_{\Sigma_{Q}}^{\square_{Q}} / J$ is noetherian local, one sees that p is $A_{\Sigma_{Q}}^{\square_{Q}} / J$-regular and therefore that $A_{\Sigma_{Q}}^{\square_{Q}} / J$ is p-torsion free. As a result, $A_{\Sigma_{Q}} / J$ injects into the reduced ring $\left(A_{\Sigma_{Q}}^{\square} / J\right)[1 / p]$ and the reducedness of $A_{\Sigma_{Q}} / J$ follows. The injectivity of the surjection $R_{\Sigma} \rightarrow T_{\Sigma}$ follows from the faithfulness of H_{Σ} as an R_{Σ}-module.

The following is due originally to Hu-Paškūnas [45]:
Lemma 18. Let R be a noetherian local ring and let M be a faithful, Cohen-Macaulay, finitely generated R-module. Let r, r_{1}, \ldots, r_{N} be a system of parameters of R, let J denote the ideal generated by r_{1}, \ldots, r_{N} and let $\bar{R}=R / J$ and $\bar{M}=M \otimes_{R} R / J$. Suppose that

- $M[1 / r]$ is Cohen-Macaulay and faithful over $R[1 / r]$,
- $\bar{M}[1 / r]$ is a semi-simple $\bar{R}[1 / r]$-module,
- for every prime ideal Δ in $R[1 / r]$ which is the pre-image of a maximal ideal \mathfrak{m} that lies in $\operatorname{Supp}_{\bar{R}[1 / r]}(\bar{M}[1 / r])$, the localisation of $R[1 / r]$ at Δ is regular.

Then $\bar{R}[1 / r]$ is reduced.
Proof. See Lemma 19 in [75].

$5 \bar{\rho}$ is irreducible with soluble image

5.1 $\bar{\rho}$ is not induced from a character of an imaginary quadratic extension of F in which every place of F above p does not split completely

Suppose F satisfies the following conditions:

- $[F: \mathbb{Q}]$ is even,
- when
* $p>2$
* the restriction of $\bar{\rho}$ to $\operatorname{Gal}\left(\bar{F} / F\left(\zeta_{p}\right)\right)$ is reducible (while $\bar{\rho}$ remains irreducible), hence $\bar{\rho}$ is abelian when restricted to $\operatorname{Gal}\left(\bar{F} / F^{+}\right)$for the quadratic extension F^{+}over F in $F\left(\zeta_{p}\right)$,
$* F^{+}$is imaginary over F,
hold simultaneously, suppose that not every place in S_{p} splits completely in F^{+},
- when
* $p=2$
* $\bar{\rho}$ has soluble image (while $\bar{\rho}$ remains irreducible), hence $\bar{\rho}$ is abelian when restricted to $\operatorname{Gal}(\bar{F} / E)$ for a quadratic extension E over F,
$* E$ is imaginary over F
hold simultaneously, suppose that not every place in S_{p} splits completely in E,
Definition. A prime ideal Γ of R_{Σ} is said to be pro-modular if Γ contains the kernel of the surjective homomorphism $r=r(\bar{\rho}): R_{\Sigma} \rightarrow T_{\Sigma}$; in which case, $R_{\Sigma} \rightarrow R_{\Sigma} / \Gamma$ factors as

where the varical maps are both surjective and it is pro-modular in the sense of [81].
Definition. A prime Γ of R_{Σ} is said to be admissible if is is of dimension 1 and contains p and if we let $\rho=\rho_{\Gamma}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(R)$ where $R=R_{\Gamma}$ denotes the normalisation of the quotient of R by Γ in its field K of fractions,
- Γ is of dimension 1 and contains p; enlarging \mathscr{O} if necessary, we may assume that R is isomorphic to a power series ring over \mathbb{F} with a single variable, say π),
- $\rho \otimes_{R} \bar{K}$ is irreducible,
- $\operatorname{det} \rho$ is of finite order,
- if $p>2$ (resp. $p=2$), then ρ is not F^{+}-dihedral (resp. ρ is not dihedral),
- for every v in S_{p} (resp. S_{R}), the restriction ρ_{v} of ρ at v is reducible with distinct diagonal characters (resp. is trivial),
- Γ is pro-modular.

We firstly assume that an admissible prime Γ of R_{Σ} exists- this will be proved in Proposition 32.
Following the discussion at the beginning of Section 7 in [80] (and Section 4.6 in [89]), we may, and will, replace Λ by its finite faithfully flat extension in such a way that the natural map $\Lambda \rightarrow R_{\Sigma}$ gives rise to an isomorphism modulo Γ and is isomorphic to the formal power series ring $\mathbb{F}[[\pi]]$, and the induced map on completed-localisation at Γ also defines an isomorphism on their respective residue field (isomorphic to $\mathbb{F}[[\pi]]$).

5.2 Selmer groups

Let $R=\mathbb{F}[[\pi]]$ and $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(R)$.
Definition. Given a module over R, by the order of an element of the module, we shall mean the smallest power of $\boldsymbol{\pi}$ that annihilates it.

Let $F_{N}=F\left(\zeta_{p^{v}}\right)$ and F_{∞} denote the union of the F_{N} 's. Following [22] and [89], we define (dual) Selmer groups for $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(R)$ that we are interested in: Fix a deformation data

$$
\Sigma=\left(S, T,\left(L_{\mathrm{v}}\right)_{\mathrm{v} \in S}\right)
$$

where it is assumed that S contains S_{p} and S_{∞}, and while $T=S-S_{\infty}$ as before.
Suppose that $S_{Q, N}$ is disjoint from S as in previous sections. Following [89] Section 5.2, define $H_{\Sigma_{\ell, N}}^{1}\left(F, \operatorname{ad} \rho \otimes_{R} R / \pi^{r}\right)$ to be the cohomology group defined as in Section 2 in [75] with R / π^{r} in place of $\mathbb{F}, S \cup S_{Q, N}$ in place of S (we write subspaces $L_{\mathrm{v}}^{(r)} \subset H^{1}\left(D_{\mathrm{v}}\right.$, ad $\left.\rho \otimes_{R} R / \pi^{r}\right)$ defined analogously over R / π^{r} at $\left.S \cup S_{Q, N}\right)$. Similarly define $H_{\Sigma_{\varrho, N}^{\perp}}^{1}\left(F, \operatorname{ad} \rho(1) \otimes_{R} R / \pi^{r}\right)$ following Section 2 in [75].

As $r \geq 1$ varies, the $H_{\Sigma_{\ell, N}}^{1}\left(F, \operatorname{ad} \rho \otimes_{R} R / \pi^{r}\right)\left(\right.$ resp. $\left.H_{\Sigma}^{\perp}\left(F, \operatorname{ad} \rho(1) \otimes_{R} R / \pi^{r}\right)\right)$ defines a direct system system, and let

$$
\begin{gathered}
\quad H_{\Sigma_{Q, N}}^{1}\left(F, \operatorname{ad} \rho \otimes_{R} K / R\right)=\lim _{r \rightarrow} H_{\Sigma_{Q, N}}^{1}\left(F, \operatorname{ad} \rho \otimes_{R} R / \pi^{r}\right) \\
\left(\text { resp. } H_{\Sigma_{\bigotimes, N}^{\perp}}^{1}\left(F, \operatorname{ad} \rho(1) \otimes_{R} K / R\right)=\lim _{r \rightarrow} H_{\Sigma_{\emptyset, N}}^{1}\left(F, \operatorname{ad} \rho(1) \otimes_{R} R / \pi^{r}\right)\right)
\end{gathered}
$$

denote the limit.

Proposition 19. Fix r.

$$
\begin{aligned}
H_{\Sigma_{Q, N}}^{1}\left(F, \operatorname{ad} \rho \otimes_{R} R / \pi^{r}\right) & \simeq H_{\Sigma_{Q, N}}^{1}\left(F, \operatorname{ad} \rho \otimes_{R} \otimes_{R} K / R\right)\left[\pi^{r}\right] \\
H_{\Sigma_{\ell, N}^{\perp}}^{1}\left(F, \operatorname{ad} \rho(1) \otimes_{R} R / \pi^{r}\right) & \simeq H_{\Sigma_{\downarrow, N}^{\perp}}^{1}\left(F, \operatorname{ad} \rho(1) \otimes_{R} \otimes_{R} K / R\right)\left[\pi^{r}\right]
\end{aligned}
$$

Proof. By definition, for every integer $r \geq s$, we have a commutative diagram:

$$
\begin{aligned}
& \begin{array}{ccc}
0 & 0 & \\
\bigoplus_{\mathrm{v} \in \mathrm{~T}} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \rho \otimes R / \pi^{s}\right) & \bigoplus_{\mathrm{v} \in \mathrm{~T}} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \rho \otimes R / \pi^{r}\right) & \\
\downarrow & \bigoplus_{\mathrm{v} \in \mathrm{~T}} H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \rho \otimes R / \pi^{r-s}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccccc}
H_{\Sigma_{Q, N}}^{1}\left(F, \operatorname{ad} \rho \otimes R / \pi^{s}\right) \\
\downarrow & \longrightarrow & H_{\Sigma_{Q, N}}^{1}\left(F, \underset{\downarrow}{\downarrow} \rho \otimes R / \pi^{r}\right) & \xrightarrow{\downarrow} & \xrightarrow{\pi^{s}} \\
H^{1}\left(F_{S}, \operatorname{ad} \rho \otimes R / \pi^{s}\right) & \longrightarrow & H^{1}\left(F_{S}, \operatorname{ad} \rho \otimes R / \pi^{r}\right) & \xrightarrow{\pi^{s}} & H_{\Sigma_{\ell, N}}^{1}\left(F, \operatorname{ad} \rho \otimes R / \pi^{r-s}\right) \\
\downarrow & H^{1}\left(F_{S}, \operatorname{ad} \rho \otimes R / \pi^{r-s}\right)
\end{array}
\end{aligned}
$$

where the direct sums in the first row range over T.
We firstly show that $\operatorname{ker}\left(H^{1}\left(F_{S}, \operatorname{ad} \rho \otimes R / \pi^{s}\right) \rightarrow H^{1}\left(F_{S}, \operatorname{ad} \rho \otimes R / \pi^{r}\right)\right)=0$. This follows from observing
$0 \rightarrow H^{0}\left(F_{S}\right.$, ad $\left.\rho \otimes R / \pi^{s}\right) \rightarrow H^{0}\left(F_{S}\right.$, ad $\left.\rho \otimes R / \pi^{r}\right) \rightarrow H^{0}\left(F_{S}\right.$, ad $\left.\rho \otimes R / \pi^{r-s}\right) \rightarrow H^{1}\left(F_{S}\right.$, ad $\left.\rho \otimes R / \pi^{s}\right) \rightarrow \cdots$
that the boundary map is indeed zero, for it is isomorphic to $0 \rightarrow R / \pi^{s} \rightarrow R / \pi^{r} \xrightarrow{\pi^{s}} R / \pi^{r-s} \rightarrow 0$. Granted, since ker $\left(H^{0}\left(D_{\mathrm{v}}\right.\right.$, ad $\left.\rho \otimes R / \pi^{s}\right) \rightarrow H^{0}\left(D_{\mathrm{v}}\right.$, ad $\left.\left.\rho \otimes R / \pi^{r}\right)\right)=0$ for v in T, and similarly at v in S_{∞}, it follows that

$$
\operatorname{ker}\left(H_{\Sigma_{Q, N}}^{1}\left(F, \operatorname{ad} \rho \otimes R / \pi^{s}\right) \rightarrow H_{\Sigma_{Q, N}}^{1}\left(F, \operatorname{ad} \rho \otimes R / \pi^{r}\right)\right)=0
$$

thereby

$$
H_{\Sigma_{\ell, N}}^{1}\left(F, \operatorname{ad} \rho \otimes R / \pi^{s}\right) \simeq H_{\Sigma_{Q, N}}^{1}\left(F, \operatorname{ad} \rho \otimes R / \pi^{r}\right)\left[\pi^{s}\right] .
$$

For the second assertion, we similarly observe for $r \geq s$, we have a commutative diagram

$$
\begin{aligned}
& \underset{v \in S_{Q, N}}{\bigoplus} H^{1}\left(D_{v}, \text { ad } \rho(1) \otimes R / \pi^{s}\right) / L_{v}^{(s) \perp} \rightarrow \underset{v \in S_{Q, N}}{ } H^{1}\left(D_{v}, \text { add } \rho(1) \otimes R / \pi^{r}\right) / L_{v}^{(r)} \perp \rightarrow \underset{v \in S_{Q, N}}{ } H^{1}\left(D_{v}, \text { ad } \rho(1) \otimes R / \pi^{r-s}\right) / L_{v}^{(r-s)} \perp \\
& \bigoplus_{v \in S_{\infty}} H^{1}\left(D_{v}, \text { ad } \rho(1) \otimes R / \pi^{s}\right) / L_{v}^{(s) \perp} \quad \bigoplus_{v \in S_{\infty}} H^{1}\left(D_{v}, \text { ad } \rho(1) \otimes R / \pi^{r}\right) / L_{v}^{(r) \perp} \quad \bigoplus_{v \in S_{\infty}} H^{1}\left(D_{v}, \text { ad } \rho(1) \otimes R / \pi^{r-s}\right) / L_{v}^{(r-s) \perp}
\end{aligned}
$$

Observe that for v in $S_{Q, N} \cup S_{\infty}$,

$$
\operatorname{ker}\left(H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \rho(1) \otimes R / \pi^{s}\right) / M_{\mathrm{v}}^{(s) \perp} \rightarrow H^{0}\left(D_{\mathrm{v}}, \operatorname{ad} \rho(1) \otimes R / \pi^{r}\right) / M_{\mathrm{v}}^{(r) \perp}\right)=0
$$

and

$$
\operatorname{ker}\left(H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \rho(1) \otimes R / \pi^{s}\right) / L_{\mathrm{v}}^{(s) \perp} \rightarrow H^{1}\left(D_{\mathrm{v}}, \operatorname{ad} \rho(1) \otimes R / \pi^{r}\right) / L_{\mathrm{v}}^{(r) \perp}\right)=0
$$

It then follows that $\operatorname{ker}\left(H_{\Sigma_{\emptyset, N}^{\perp}}^{1}\left(F_{S}, \operatorname{ad} \rho(1) \otimes R / \pi^{r}\right) \rightarrow H_{\Sigma_{Q, N}^{\perp}}^{1}\left(F_{S}, \operatorname{ad} \rho(1) \otimes R / \pi^{r}\right)\right)$ is isomorphic
to to

$$
\operatorname{ker}\left(H^{1}\left(F_{S}, \operatorname{ad} \rho(1) \otimes R / \pi^{r}\right) \rightarrow H^{1}\left(F_{S}, \operatorname{ad} \rho(1) \otimes R / \pi^{r}\right)\right)
$$

On the other hand, the latter is zero as in the proof of the first assertion. It therefore follows that

$$
H_{\Sigma_{\grave{Q}, N}^{1}}^{1}\left(F, \operatorname{ad} \rho(1) \otimes R / \pi^{r}\right)\left[\pi^{s}\right] \simeq H_{\Sigma \bar{\varrho}, N}^{1}\left(F, \operatorname{ad} \rho(1) \otimes / \pi^{r}\right)\left[\pi^{s}\right] .
$$

Since

$$
\lim _{\rightarrow r} H_{\Sigma_{\ell, N}}^{1}\left(F, \operatorname{ad} \rho \otimes R / \pi^{r}\right)\left[\pi^{s}\right] \simeq H_{\Sigma_{\ell, N}}^{1}(F, \operatorname{ad} \rho \otimes K / R)\left[\pi^{s}\right]
$$

and

$$
\lim _{\rightarrow r} H_{\Sigma_{\bar{Q}, N}^{1}}^{1}\left(F, \operatorname{ad} \rho(1) \otimes R / \pi^{r}\right)\left[\pi^{s}\right] \simeq H_{\Sigma \bar{\varrho}, N}^{1}(F, \operatorname{ad} \rho(1) \otimes K / R)\left[\pi^{s}\right],
$$

the assertions follow.
Everything we need is proved in [1]. We give it a slightly different narrative to be consistent with our approach. The underling space of ad ρ is the set of 2 -by- 2 matrices over R and let Z be the normal subgroup of scalar matrices.

We have

$$
\begin{array}{ll}
\\
0 \rightarrow H^{1}\left(\operatorname{Gal}\left(F_{N} / F\right), Z(1)\right) \rightarrow H^{1}\left(F_{S}, \operatorname{ad} \rho(1)\right) \rightarrow & H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), \operatorname{ad} \rho(1)\right) \\
\downarrow \\
& H^{1}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right), \operatorname{ad} \rho(1)\right) \\
\downarrow \\
& H^{1}\left(\operatorname{Gal}\left(F_{S} / K_{N}\right), \operatorname{ad} \rho(1)\right)
\end{array}
$$

where the kernel $H^{1}\left(\operatorname{Gal}\left(F_{N} / F\right), Z(1)\right)$ is zero if $p>2$ and is of rank 2 over R if $N>N_{\text {kw }}$ (Lemma 3.2.3 in [1]; the result is the R / π^{r}-analogue of the observations earlier $\operatorname{dim}_{\mathbb{F}} \operatorname{ker}\left(H^{1}\left(F_{S}\right.\right.$, ad $\left.\bar{\rho}\right) \rightarrow$ $\left.H^{1}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right), \operatorname{ad} \bar{\rho}\right)\right)=2$ in the proof of Lemma 13); and $\operatorname{Gal}\left(K_{N} / F_{N}\right)$ is isomorphic to the image of ρ.

We will be interested in a non-trivial class in $H^{1}\left(F_{S}\right.$, ad $\left.\rho\right)$ whose image in $H^{1}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right)\right.$, ad $\left.\rho(1)\right)$ is non-trivial (if $p>2$, then any class in $H^{1}\left(F_{S}\right.$, ad ρ) will be).

Let $G=\mathrm{GL}_{2}$ and $\bar{G}=\mathrm{SL}_{2}$. Let $\Delta \subset G(R)$ denote the image of ρ and $\bar{\Delta}$ denote $\Delta \cap$ $\bar{G}(R)$. If $\bar{\rho}$ is not dihedral (resp. is dihedral), then it follows from ρ being ' p-distinguished' with its determinant of finite order (resp. from ρ being not dihedral) that $\Delta \hookrightarrow G(R) \rightarrow G(\mathbb{F})$ has non-trivial kernel, and it follows from Proposition 1.7 .5 in [1] that $\bar{\Delta}$ is Zariski dense in \bar{G} over K. Since the image by ρ of a complex conjugation defines a non-trivial unipotent element in Δ, it follows from Proposition 3.1.2 in [1], which is based on Theorem 0.2 in [71], that there exists a sub-extension L of K of finite index and an algebraic group \bar{H} over L such that $\bar{\Delta}$ is thought of
as an open compact subgroup of $\bar{H}(L)$ up to conjugation in $G(L)$. By abuse of notation, we write \bar{G} (resp. K) for \bar{H} (resp. L). With these in mind, we think of $\bar{\Delta}$ as an open compact subgroup of $\bar{G}(R)$.

Lemma 20. There exists a non-negative integer e such that every non-trivial $\mathrm{Gal}\left(F_{S} / F_{N}\right)$-stable submodule of $(\operatorname{ad} \rho / Z) \otimes R / \pi^{r}$ annihilated by π^{s}, where $s \leq e$, contains an element whose trace in R / π^{r} does not lie in $\pi^{e}\left(R / \pi^{r}\right)$.

Proof. This is proved in Lemma 3.2.5 in [1].
Remark. This lemma plays the role of Lemma 6.5 in [80] when $p>2$ and ρ is not dihedral, and Lemma 2.5.2 in [79] when $p>2$ and ρ is dihedral but not F^{+}-dihedral.

On the other hand, it follows from $H^{0}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), \operatorname{ad} \rho / Z\right)=0($ Lemma 3.1.4 in [1]) that we have an exact sequence

$$
0 \rightarrow H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), Z\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), \operatorname{ad} \rho\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), \operatorname{ad} \rho / Z\right) \rightarrow \cdots,
$$

where Lemma 3.5.1 in [1] proves that the image of $H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), \operatorname{ad} \rho\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), \operatorname{ad} \rho / Z\right)$ is at most rank 1 over R, and so is the image of $H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right)\right.$, ad $\left.\rho \otimes R / \pi^{r}\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right)\right.$, ad $\rho / Z \otimes$ R / π^{r}) over R / π^{r}. Indeed, it is possible to prove

Lemma 21. There exists a non-negative integer s such that π^{s} annihilates the image of $H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right)\right.$, ad $\rho \otimes$ $\left.R / \pi^{r}\right)$ in $H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), \operatorname{ad} \rho / Z \otimes R / \pi^{r}\right)$.

Proof. Let $\bar{\Delta}_{e}$ denote the principal congruence subgroup of matrices in $\bar{\Delta} \subset \bar{G}(R)$ which are congruent modulo π^{e} to 1 in $\bar{G}\left(R / \pi^{e}\right)$. Since $\bar{\Delta}$ is open compact in $\bar{G}(R)$, there exists a sufficiently large e such that $\Delta=\operatorname{Gal}\left(K_{N} / F_{N}\right)$ contains $\bar{\Delta}_{e}$.

Firstly we observe that the assertion is equivalent to establishing that $\boldsymbol{\pi}^{s}$ annihilates the cokernel of $H^{1}\left(\Delta, Z \otimes R / \pi^{r}\right) \rightarrow H^{1}\left(\Delta\right.$, ad $\left.\rho \otimes R / \pi^{r}\right)$. This, in turn, is equivalent to establishing that there exists a non-negative integer s such that π^{s} annihilates the cokernel of the composite

$$
H^{1}\left(\Delta, Z \otimes R / \pi^{r}\right) \rightarrow H^{1}\left(\Delta, \operatorname{ad} \rho \otimes R / \pi^{r}\right) \rightarrow H^{1}\left(\bar{\Delta}_{e}, \operatorname{ad} \rho / Z \otimes R / \pi^{r}\right)
$$

Since $H^{1}\left(\Delta, Z \otimes R / \pi^{r}\right) \rightarrow H^{1}\left(\Delta\right.$, ad $\left.\rho \otimes R / \pi^{r}\right)$ is injective, it suffices to show that the kernel of the composite $H^{1}\left(\Delta, \operatorname{ad} \rho \otimes R / \pi^{r}\right) \rightarrow H^{1}\left(\bar{\Delta}_{e}\right.$, ad $\left.\rho / Z \otimes R / \pi^{r}\right)$ is $H^{1}\left(\Delta, Z \otimes R / \pi^{r}\right)$. If \bar{N} is an open normal subgroup of $\bar{\Delta}$ contained in $\bar{\Delta}_{e}$, then the subspace of \bar{N}-invariants of ad ρ / Z is trivial, and therfore the composite

$$
H^{1}\left(\Delta, \operatorname{ad} \rho / Z \otimes R / \pi^{r}\right) \rightarrow H^{1}\left(\bar{\Delta}_{e}, \operatorname{ad} \rho / Z \otimes R / \pi^{r}\right) \rightarrow H^{1}\left(\bar{N}, \operatorname{ad} \rho / Z \otimes R / \pi^{r}\right)
$$

is injective (since the \bar{N}-invariants of ad ρ / Z is trivial); it therefore follows that $H^{1}(\Delta$ ad $\rho / Z \otimes$ $\left.R / \pi^{r}\right) \rightarrow H^{1}\left(\bar{\Delta}_{\underline{e}}, \operatorname{ad} \rho / Z \otimes R / \pi^{r}\right)$ is injective. The kernel of $H^{1}\left(\Delta, \operatorname{ad} \rho \otimes R / \pi^{r}\right) \rightarrow H^{1}(\Delta, \operatorname{ad} \rho / Z \otimes$ $\left.R / \pi^{r}\right) \rightarrow H^{1}\left(\bar{\Delta}_{e}\right.$, ad $\left.\rho / Z \otimes R / \pi^{r}\right)$ is computed by the kernel of $H^{1}\left(\Delta, \operatorname{ad} \rho \otimes R / \pi^{r}\right) \rightarrow$ $H^{1}\left(\Delta\right.$, ad $\left.\rho / Z \otimes R / \pi^{r}\right)$ which is $H^{1}\left(\Delta, Z \otimes R / \pi^{r}\right)$.

Let ϕ be a class in the image of $H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right)\right.$, ad $\left.\rho \otimes R / \pi^{r}\right)$ in $H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), \operatorname{ad} \rho / Z \otimes\right.$ R / π^{r}). Step 1, Step 2 and Step 3 in the proof of Lemma 3.1.6 in [1] then show that there exists a non-negative integer \boldsymbol{s} such that $\boldsymbol{\pi}^{s} \phi$ is uniquely determined by its restriction to $\bar{\Delta}_{e}$, and that it is
indeed zero.

Remark. When $p>2$ and ρ is not dihedral, this is proved in Lemma 6.9 in [80]. If $p>2$ and ρ is dihedral but not F^{+}-dihedral, this is proved in Lemma 2.5.3 in [79].

Proposition 22. There exists an integer $e>0$ such that, given a class ϕ in $H^{1}\left(F_{S}\right.$, ad $\left.\rho(1) \otimes R / \pi^{r}\right)$ of order $s(\phi)>e$ which maps to a non-trivial class in $H^{1}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right)\right.$, ad $\left.\rho(1) \otimes R / \pi^{r}\right)\left(\right.$ where $N>N_{\mathrm{kw}}$ if $p=2$) of order $s(\phi)$, then there exists a place v of F such that

- $\mathbf{N}_{F / \mathbb{Q}^{\mathrm{V}}} \equiv 1 \bmod p^{N}$,
- $\bar{\rho}$ is unramified at v and $\bar{\rho}\left(\right.$ Frob $\left._{\mathrm{v}}\right)$ has distinct eigenvalues,
- the trace of the Frob b_{v} equivariant projection to a chosen eigenspace of $\phi\left(\mathrm{Frob}_{\mathrm{v}}\right) \subset$ ad $\rho \otimes R / \pi^{r}$ has order $s(\phi)-e$.

Proof. Let ϕ_{N} denote the image of ϕ in $H^{1}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right), \operatorname{ad} \rho(1) \otimes R / \pi^{r}\right)$, and φ_{N} denote the image of ϕ_{N} in the $\operatorname{Gal}\left(K_{N} / F_{N}\right)$-invariant subspace of $H^{1}\left(\operatorname{Gal}\left(F_{S} / K_{N}\right), \operatorname{ad} \rho(1) \otimes R / \pi^{r}\right)$.

It suffices to prove that there is a non-negative integer e such that given a non-trivial class ϕ_{N} in $H^{1}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right), \operatorname{ad}(1) \otimes R / \pi^{r}\right)$, then there is $\boldsymbol{\gamma}$ in $\operatorname{Gal}\left(F_{S} / F_{N}\right)$ such that $\bar{\rho}$ is unramfied at $\boldsymbol{\gamma}$. If an eigenvalue of $\bar{\rho}(\gamma)$ is chosen, then the trace $\boldsymbol{\tau}\left(\phi_{N}\right)$ of the $\boldsymbol{\gamma}$-equivariant projection onto the corresponding eigenspace has order at least $s(\phi)-e$.

Suppose that φ_{N} is trivial; in which case, it defines a class in $H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right)\right.$, ad $\left.\rho \otimes R / \pi^{r}\right)$. If it maps trivially to $H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right)\right.$, ad $\left.\rho / Z \otimes R / \pi^{r}\right)$, then it defines an element of $H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), Z \otimes\right.$ R / π^{r}) and the assertion is proved in (a) of Lemma 3.2.9 of [1]. As ϕ_{N} has exact order $s(\phi)$, one can choose an element γ of $\operatorname{Gal}\left(F_{S} / F_{N}\right)$ such that $\phi_{N}(\gamma)$ has order $s(\phi)$ in R / π^{r}. Thinking of ϕ_{N} as a homomorphism from $\operatorname{Gal}\left(F_{S} / F_{N}\right)$ to $Z(1) \otimes R / \pi^{r}$, one may and will find an element g in $\operatorname{ker} \phi_{N}$ such that $\bar{\rho}(g \gamma)$ has distinct eigenvalues. Choose one eigenvalue. If $\boldsymbol{\tau}$ denotes the map taking the trace of the γ-equivariant projection onto the eigenspace for the chosen eigenvalue, $\tau\left(\phi_{N}(g \gamma)\right)=\tau\left(\phi_{N}(g)\right)+\tau\left(\phi_{N}(\gamma)\right)=\tau\left(\phi_{N}(\gamma)\right)$ has order $s(\phi)$ by construction. The place v corresponding to $g \gamma$ proves the assertion.

Suppose that φ_{N} is trivial but defines a non-trivial class in $H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), \operatorname{ad} \rho / Z \otimes R / \pi^{r}\right)$.It follows from Lemma 21 that there exists a positive integer s such that $\pi^{s} \phi_{N}$ defines a class in $H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right), Z \otimes R / \pi^{r}\right)$ of order at least $s(\phi)-s$. An argument similar to the one seen above proves the assertion.

Suppose that φ_{N} is non-trivial; this is proved by (c) of the proof of Lemma 3.2 .9 in [1]. It defines either a trivial, or a non-trivial, class in $H^{1}\left(\operatorname{Gal}\left(F_{S} / K_{N}\right)\right.$, ad $\left.\rho / Z \otimes R / \pi^{r}\right)$. If it defines a trivial class, then φ_{N} defines a class in $H^{1}\left(\operatorname{Gal}\left(F_{S} / K_{N}\right), Z \otimes R / \pi^{r}\right)$ and an argument similar to the one seen above proves the assertion. We therefore assume that we have a non-trivial class in $H^{1}\left(\operatorname{Gal}\left(F_{S} / K_{N}\right), \operatorname{ad} \rho / Z \otimes R / \pi^{r}\right)$. Since π^{s} annihilates $H^{1}\left(\operatorname{Gal}\left(K_{N} / F_{N}\right)\right.$, ad $\left.\rho / Z\right)$ by Lemma 21, it follows that φ_{N} has order at least $s(\phi)-s$. Thinking of φ_{N} as a homomorphism φ_{N} : $\operatorname{Gal}\left(F_{S} / K_{N}\right) \rightarrow \operatorname{ad} \rho / Z \otimes R / \pi^{r}$ whose image is $\operatorname{Gal}\left(F_{S} / F_{N}\right)$-invariant, it follows from Lemma 20 that the image contains an element g whose trace is of order at least $s(\phi)-e$.

We then find γ in $\operatorname{Gal}\left(F_{S} / F_{N}\right)$ such that $\bar{\rho}(\gamma)$ has distinct eigenvalues. Choose one of the eigenvalues and let $\boldsymbol{\tau}$ denote the corresponding map as before. If $\boldsymbol{\tau}(\phi(\gamma))$ has order at least $s(\phi)-e$, then we are done. If not, $\tau(\phi(g \gamma))=\tau(\phi(\gamma))+\tau(\phi(g))$ has order at least $s(\phi)-e$. By the Chebotarev density theorem, we find v such that Frob ${ }_{\mathrm{v}}$ defines $\boldsymbol{\gamma}$ or $\boldsymbol{\gamma} g$.

Corollary 23. For every N when $p>2$ and for every $N>N_{\mathrm{kw}}$ if $p=2$, there exists a set $S_{Q, N}$ of primes v as above such that

- $\left|S_{Q, N}\right|=q$ where $q=\operatorname{dim}_{\mathbb{F}} H_{\Sigma^{\perp}}^{1}(F, \operatorname{ad} \bar{\rho}(1))$ if $p>2$ and $q=\operatorname{dim}_{\mathbb{F}} H_{\Sigma^{\perp}}^{1}(F, \operatorname{ad} \bar{\rho}(1))-2$ if $p=2$;
- when $p>2, H_{\Sigma{ }_{\varrho, N}}^{1}\left(F_{S}, \operatorname{ad} \rho(1) \otimes_{R} L / R\right)$ is a finite R-module bounded independently of N, while when $p=2$,

$$
H_{\Sigma{ }_{\varrho, N}^{\perp}}^{1}\left(F_{S}, \text { ad } \rho(1) \otimes_{R} R / \pi^{r}\right) \asymp\left(R / \pi^{r}\right)
$$

holds for every r.

$$
H_{\Sigma_{Q, N}}^{1}\left(F_{S}, \operatorname{ad} \rho \otimes_{R} K / R\right) \simeq(K / R)^{r} \oplus X_{\Sigma_{Q, N}}
$$

holds, where $X_{\Sigma_{Q, N}}$ is a finite R-module with $\left|X_{\Sigma_{Q, N}}\right|$ bounded independently of N, and where $r=q-[F: \mathbb{Q}]-1($ resp. $r=2 q-[F: \mathbb{Q}]+1)$ if $p>2($ resp. $p=2)$.

Proof. Repeatedly apply Lemma 12 (resp. Lemma 13) to a set of q classes, of order r, in $H_{\Sigma^{\perp}}^{1}(F, \operatorname{ad} \rho(1) \otimes$ $\left.R / \pi^{r}\right)$ which map to non-trivial classes in $H^{1}\left(\operatorname{Gal}\left(F_{S} / F_{N}\right)\right.$, ad $\left.\rho \otimes R / \pi^{r}\right)$) if $p>2$ (resp. $p=2$). In the light of Proposition 19, this proves that $H_{\Sigma_{Q, N}^{\perp}}^{1}\left(F, \operatorname{ad} \rho \otimes_{R} K / R\right)$ is a finite R-module of order independent of N when $p>2$; when $p=2$, the second assertion further requires arguments as in Lemma 13.

To deduce the third assertion, one observes that an analogue of Proposition 5 holds with $\rho \otimes$ R / π^{r} in place of $\bar{\rho}$ and one therefore sees that $\mathrm{rk} H_{\Sigma_{\ell, N}}^{1}\left(F_{S}\right.$, ad $\left.\rho \otimes_{R} R / \pi^{r}\right)$ (where by rk, we mean the exponent, with respect to r, of the cardinality of what follows) is computed by

$$
\operatorname{rk} H_{\Sigma_{Q, N}^{\perp}}^{1}\left(F, \operatorname{ad} \rho(1) \otimes_{R} R / \pi^{r}\right)-1-[F: \mathbb{Q}]+\sum_{\mathrm{v} \in S_{Q, N}} 1=q-[F: \mathbb{Q}]-1
$$

where $\left|S_{Q, N}\right|=q=\operatorname{dim}_{\mathbb{F}} H_{\Sigma^{\perp}}^{1}(F, \operatorname{ad} \bar{\rho}(1))$ if $p>2$, and

$$
\begin{aligned}
& \mathrm{rk} H_{\Sigma_{Q, N}^{\perp}}^{1}\left(F, \operatorname{ad} \rho(1) \otimes_{R} R / \pi^{r}\right)-1-[F: \mathbb{Q}]+\sum_{\mathrm{v} \in S_{Q, N}} 2 \\
= & 2-1-[F: \mathbb{Q}]+2 q=2 q-[F: \mathbb{Q}]+1
\end{aligned}
$$

where $\left|S_{Q, N}\right|=q=\operatorname{dim}_{\mathbb{F}} H_{\Sigma^{\perp}}^{1}(F, \operatorname{ad} \bar{\rho}(1))-\operatorname{dim}_{\mathbb{F}} H_{\Sigma_{Q, N}^{\perp}}^{1}(F, \operatorname{ad} \bar{\rho}(1))=\operatorname{dim}_{\mathbb{F}} H_{\Sigma^{\perp}}^{1}(F, \operatorname{ad} \bar{\rho}(1))-$ 2 if $p=2$.

5.3 Patching and localised $R=T$

Definition. For a ring R and a prime ideal Γ, let R^{Γ} denote the completion at the maximal ideal of the localisation of R at Γ.

The universal representation $\operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(R_{\Sigma}\right)$ specialises to a representation

$$
\rho_{\Gamma}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(R)
$$

over $R=\mathbb{F}[[\pi]]$. Let $\boldsymbol{\mu}_{\Sigma_{Q, N}}$ denote the kernel of $R_{\Sigma_{Q, N}}^{\square} \rightarrow R_{\Sigma} \rightarrow R$. Let $\boldsymbol{\mu}$ denote the pre-image of $\boldsymbol{\mu}_{\Sigma_{Q, N}}$ in A_{Σ}^{\square} by the map $A_{\Sigma}^{\square}=A_{\Sigma_{Q, N}}^{\square} \rightarrow R_{\Sigma_{Q, N}}$.

By slight abuse of notation, let $A_{\Sigma}^{\square, \Gamma}$ (resp. $R_{\Sigma_{Q, N}}^{\square, \Gamma}$) denote the completion of the localisation of A_{Σ}^{\square} (resp. $R_{\Sigma_{\ell, N}}^{\square}$) at $\boldsymbol{\mu}$ (resp. $\boldsymbol{\mu}_{\Sigma_{Q, N}}$). We let $A_{\Sigma_{\ell}}^{\square, \Gamma}=A_{\Sigma}^{\square, \Gamma}\left[\left[X_{1}, \ldots, X_{r}\right]\right]$ and, if $p=2$, we furthermore let $A_{\Sigma_{Q}}^{\square, \nabla, \Gamma}=A_{\Sigma}^{\square, \Gamma}\left[\left[X_{1}, \ldots, X_{r-(q+2)}\right]\right]$.

Proposition 24. Let r be an integer defined in Corollary 23. If $p>2$ (resp. $p=2$), then, for every N (resp. for every $N>N_{\mathrm{kw}}$), there is an isomorphism of R-mdoules between $\boldsymbol{\mu}_{\Sigma_{Q, N}} /\left(\boldsymbol{\mu}+\boldsymbol{\mu}_{\Sigma_{Q, N}}^{2}\right)$ and $R^{r} \oplus X_{\Sigma_{Q, N}}$ for some R-module $X_{\Sigma_{Q, N}}$ with $\left|X_{\Sigma_{Q, N}}\right|$ bounded independently of N.

Proof. One can argue as in the proof of Corollary 5.7 in [89] that

$$
\operatorname{Hom}_{R}\left(\boldsymbol{\mu}_{\Sigma_{Q, N}} /\left(\boldsymbol{\mu}+\boldsymbol{\mu}_{\Sigma_{Q, N}}^{2}\right), K / R\right) \simeq H_{\Sigma_{Q, N}}^{1}\left(F, \operatorname{ad} \rho \otimes_{R} K / R\right)
$$

as R-modules. Hence the assertion follows from Corollary 23.
We may and will let the surjective A_{Σ}-algebra homomorphism

$$
A_{\Sigma_{\varrho}}^{\square, \Gamma} \longrightarrow R_{\Sigma_{\varrho, N}}^{\square, \Gamma}
$$

be defined such that the r formal variables in $A_{\Sigma_{Q}}$ map to $\boldsymbol{\mu}_{\Sigma_{Q, N}}$ and define the maximal R-free quotient of $\boldsymbol{\mu}_{\Sigma_{Q, N}} /\left(\boldsymbol{\mu}+\boldsymbol{\mu}_{\Sigma_{Q, N}}^{2}\right)$. When $p=2$, this furthermore induces

$$
A_{\Sigma_{\ell}}^{\square, \nabla, \Gamma} \longrightarrow R_{\Sigma_{Q, N}}^{\square, \Gamma} / \nabla_{Q, N} .
$$

By patching, we have $A_{\Sigma_{Q}}^{\square} \hat{\otimes} \Lambda \hat{\otimes}_{\mathscr{O}} R^{\square}\left[\left[\Delta_{Q}\right]\right]$-module $H_{\Sigma_{Q}}^{\square}$ which is free over Λ_{Q}^{\square}. Let $\left[R^{\square}\left[\left[\Delta_{Q}\right]\right] \hat{\otimes} \Lambda\right]^{\Gamma}$ denote the completed localisation of $\Lambda \hat{\otimes}_{\mathscr{Q}} R^{\square}\left[\left[\Delta_{Q}\right]\right]$ at the pre-image of Γ in $\Lambda \hat{\otimes}_{\mathscr{Q}} R^{\square}\left[\left[\Delta_{Q}\right]\right]$; similarly define the completed localisations $R_{\Sigma_{Q}}^{\square, \Gamma}, H_{\Sigma_{Q}}^{\square, \Gamma}$, and $A_{\Sigma_{Q}}^{\square, \Gamma}$ at the respective images of Γ.

if $p>2$. We obtain a similar diagram with $R_{\Sigma_{Q}}^{\square, \Gamma} / \nabla_{Q}\left(\right.$ resp. $\left.A_{\Sigma_{Q}}^{\square, \nabla, \Gamma}\right)$ in place of $R_{\Sigma_{Q}}^{\square, \Gamma}$ (resp. $\left.A_{\Sigma_{Q}}^{\square, \Gamma}\right)$ if $p=2$.

Proposition 25. Suppose the conditions in the preceding lemma. Suppose furthermore that, for every N if $p>2$, or every $N>N_{\mathrm{kw}}$ when $p=2$, there exists a set $S_{Q, N}$ as in Corollary 23. Then H_{Σ}^{Γ} is a faithful R_{Σ}^{Γ}-module. As a result, $R_{\Sigma}^{\Gamma} \rightarrow T_{\Sigma}^{\Gamma}$ is an isomorphism.

We need a few lemmas.
Lemma 26. - $H_{\Sigma_{\ell}}^{\square, \Gamma}$ is a free module over $\left[R^{\square}\left[\left[\Delta_{Q}\right]\right] \hat{\otimes} \Lambda\right]^{\Gamma}$.

- $H_{\Sigma_{Q}}^{\square, \Gamma} / J \simeq H_{\Sigma}^{\Gamma}$.
- $A_{\Sigma_{Q}}^{\square, \Gamma} \rightarrow R_{\Sigma_{Q}}^{\square, \Gamma}\left(\right.$ resp. $\left.A_{\Sigma_{Q}}^{\square, \nabla, \Gamma} \rightarrow R_{\Sigma_{\ell}}^{\square, \Gamma} / \nabla_{Q}\right)$ is surjective.

Proof of the lemma. The first assertion is standard. The second assertion can be proved as in Lemma 15.

To prove the third, it suffices to establish that the relative tangent space vanish after $\otimes_{R} K$. By Proposition 24, the patching argument 'spends' the free R-part of $\boldsymbol{\mu}_{\Sigma_{\ell, N}} /\left(\boldsymbol{\mu}+\boldsymbol{\mu}_{\Sigma_{\ell, N}}^{2}\right)$ in taking the limit, and the relative tangent space is consequently a finite R-torsion module. This evidently turns zero when $\otimes_{R} K$.

Suppose that $\rho=\rho_{\Gamma}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(R)$ is

- reducible at every place in S_{p} with distinct diagonal characters,
- trivial at every place in S_{R},
- unramified at every place v in S_{L} and $\rho\left(\right.$ Frob $\left._{\mathrm{v}}\right)$ is a scalar in $1+\mathfrak{m}_{R}$,
- unramified at every place v in S_{A} and $\rho\left(\right.$ Frob $\left._{v}\right)$ has equal (resp. distinct) eigenvalues if $p>2$ (resp. $p=2$).

One can make a finite totally real soluble base change to ascertain ρ is 'Steinberg' at every place in S_{L} without further expenditure of effort (the image by ρ of a generator of the p-part of the tame inertia subgroup at v in S_{L} is unipotent, hence of finite p-power order; while the image of the inertia subgroup at v is finite), but it is not possible to do so similarly at S_{R}. It is for this reason we 'prescribe' Γ with the property that ρ_{Γ} is trivial at every place in $S_{R^{-}}$it is under these assumptions that one can establish A_{Σ}^{Γ} and R_{Σ}^{Γ}, rather than their quotients A_{Σ} / Γ and R_{Σ} / Γ, satisfy ring-theoretic properties one needs to prove a localised $R=T$ theorem.

Lemma 27. If the characters ζ at S_{R} are distinct (resp. trivial), then for every minimal ideal \triangle of Λ, the quotient $A_{\Sigma}^{\square, \Gamma} / \triangle$ is \mathscr{O}-flat and geometrically irreducible (resp. equidimensional) of dimension

$$
q+1+[F: \mathbb{Q}]+\gamma_{F}+4|T|,
$$

where $T=S_{p} \cup S_{R} \cup S_{L} \cup S_{A}$. Furthermore, when ζ is trivial and L is sufficiently large,

- $A_{\Sigma}^{\square, \Gamma}[1 / p]$ is regular, $A_{\Sigma}^{\square, \Gamma}$ is Cohen-Macaulay, and $A_{\Sigma}^{\square, \Gamma} / \lambda$ is generically reduced.
- every minimal prime of $A_{\Sigma}^{\square, \Gamma} /(\triangle, \lambda)$ contains a unique minimal prime of $A_{\Sigma}^{\square, \Gamma} / \triangle$.

Remark. The same set of assertions hold with $A_{\Sigma_{Q}}^{\square}$ in place of A_{Σ}^{\square}.
Proof. This follows the proof of Lemma 3.4 in [89], but we shall sketch a proof. Firstly, checking properties of A_{Σ}^{\square} remain unchanged in passing to the faithful base change, as alluded at the end of Section 5.1 will be left as an exercise for readers.

For every v in T, we let A_{v}^{\square} denote the quotient of R_{v} as defined in Section with maximal ideal $\mathrm{m}_{\mathrm{v}}^{\square}$. Let

$$
A_{\Sigma_{p} \cup \Sigma_{A}}^{\square}=A_{\Sigma_{p}}^{\square} \hat{\otimes} \hat{\bigotimes}_{v \in S_{A}} A_{\mathrm{v}}^{\square},
$$

where, to recall, $A_{\Sigma_{p}}^{\square}$ denotes $\left(\hat{\bigotimes}_{v \in S_{p}} A_{\mathrm{v}}^{\square}\right) \hat{\otimes}_{\mathscr{G}\left[\left[\Delta_{p} \times \Delta_{p}\right]\right]} \Lambda$ and

$$
A_{\Sigma_{L} \cup \Sigma_{R}}^{\square}=\hat{\bigotimes}_{\mathrm{v} \in S_{L} \cup S_{R}} A_{\mathrm{v}}^{\square}
$$

Twisting by the inverse of an unramified character of D_{v} which sends Frob ${ }_{v}$ to the scalar value of ρ_{Γ} (Frob ${ }_{v}$) at every v in S_{L} gives rise to a map

$$
\zeta: A_{\Sigma}^{\square} \rightarrow A_{\Sigma}^{\square} .
$$

Let Γ^{ζ} denote the image of $\Gamma=\Gamma^{\Sigma}$ by ζ. We then have

$$
A_{\Sigma}^{\square, \Gamma} \simeq A_{\Sigma}^{\square, \Gamma^{\varsigma}}
$$

We let $\Gamma_{\Sigma_{p} \cup \Sigma_{A}}^{\zeta}$ denote $\operatorname{ker}\left(A_{\Sigma}^{\square} \rightarrow A_{\Sigma_{p} \cup \Sigma_{A}}^{\square} \rightarrow R\right)$ and $\Gamma_{\Sigma_{L} \cup \Sigma_{R}}^{\zeta}=\operatorname{ker}\left(A_{\Sigma}^{\square} \rightarrow A_{\Sigma_{L} \cup \Sigma_{R}}^{\square} \rightarrow\right.$ $\left.\hat{\bigotimes}_{\mathrm{v} \in S_{L} \cup S_{R}} \mathbb{F}\right)=\hat{\bigotimes}_{\mathrm{v} \in S_{L} \cup S_{R}} \mathrm{~m}_{\mathrm{v}}^{\square}$. It follows that Γ^{ζ} is identified with

$$
\operatorname{ker}\left(A_{\Sigma}^{\square} \rightarrow A_{\Sigma_{p} \cup \Sigma_{A}} \hat{\otimes}\left(\hat{\bigotimes}_{\mathrm{v} \in S_{L} \cup S_{R}} \mathbb{F}\right) \rightarrow R\right)
$$

and the latter is generated by $\Gamma_{\Sigma_{p} \cup \Sigma_{A}}^{\zeta}$ and $\Gamma_{\Sigma_{L} \cup \Sigma_{L} .}^{\zeta}$. Hence

$$
A_{\Sigma}^{\square, \Gamma^{\zeta}} \simeq A_{\Sigma_{p} \cup \Sigma_{A}}^{\square, \Gamma^{\zeta}} \otimes A_{\Sigma_{L} \cup \Sigma_{R}}^{\square, \Gamma^{\zeta}} \simeq A_{\Sigma_{p} \cup \Sigma_{A}}^{\square, \Gamma^{\zeta}} \otimes A_{\Sigma_{L} \cup \Sigma_{R}}^{\square}
$$

where, by slight abuse of notation, $A_{\Sigma_{p} \cup \Gamma_{A}}^{\square, \Gamma^{\zeta}}$ (resp. $A_{\Sigma_{L} \cup \Sigma_{R}}^{\square, \Gamma^{\zeta}}$) denotes the completed localisation of $A_{\Sigma_{p} \cup \Sigma_{A}}^{\square}$ (resp. $A_{\Sigma_{L} \cup \Sigma_{R}}^{\square}$) at $\Gamma_{\Sigma_{p} \cup \Sigma_{A}}^{\zeta}$ (resp. $\Gamma_{\Sigma_{L} \cup \Sigma_{L}}^{\zeta}$). It suffices to understand $A_{\Sigma_{p} \Sigma_{A}}^{\square, \Gamma^{\zeta}}$.

For each minimal prime Δ of Λ, we observe that $\left(A_{\Sigma_{p} \cup \Sigma_{A}} / \Delta\right)^{\Gamma^{\zeta}}$ is formally smooth over $(\Lambda / \triangle)^{\Gamma}$. This follows by computing the relative tangent space of $(\Lambda / \triangle)^{\Gamma} \rightarrow\left(A_{\Sigma_{p} \cup \Sigma_{A}} / \triangle\right)^{\Gamma \zeta}$. As a result, we may conclude that $\left(A_{\Sigma_{p} \cup \Sigma_{A}} / \triangle\right)^{\Gamma^{\zeta}}$ is a regular local ring.

We observe Spec $\left[\left(A_{\Sigma_{p} \cup \Sigma_{A}}^{\square, \Gamma^{\zeta}} / \triangle\right) \hat{\otimes} A_{\Sigma_{L} \cup \Sigma_{R}}\right][1 / p]$ is connected, hence so is Spec $\left[A_{\Sigma}^{\square, \Gamma^{\zeta}} / \triangle\right][1 / p]$; on the other hand, Spec $\left[A_{\Sigma}^{\square, \Gamma^{\zeta}} / \triangle\right][1 / p]$ is regular. Combining, we see that Spec $\left[A_{\Sigma}^{\square, \Gamma^{\zeta}} / \triangle\right][1 / p]$ is a domain, and the first assertion follows from this. To see that Spec $\left[A_{\Sigma}^{\square, \Gamma^{\zeta}} / \triangle\right][1 / p]$ is regular, it suffices to show that Spec $\left[A_{\Sigma_{p} \cup \Sigma_{A}}^{\square, \Gamma^{\zeta}} / \triangle\right][1 / p]$ is regular; in fact, it is enough to show Spec $\left[A_{\Sigma, \Gamma^{\zeta}}^{\square} / \Delta\right][1 / p]$ because of the observation that the map

$$
\left[A_{\Sigma, \Gamma^{\zeta}}^{\square} / \Delta\right][1 / p] \rightarrow\left[A_{\Sigma}^{\square, \Gamma^{\zeta}} / \triangle\right][1 / p]
$$

is faithfully flat and regular, and Theorem 32.2 in [62]. The regularity of Spec $\left[A_{\Sigma, \Gamma^{\varsigma}}^{\square} / \triangle\right][1 / p]$ follows from results in Section 2.3.

Since A_{Σ}^{\square} is Cohen-Macaulay, it follows from Theorem 2.1.3 in [13] for example that the localisation of A_{Σ}^{\square} at Γ is Cohen-Macaulay. Since the morphism passing from the localisation to its completion is regular, the completion $A_{\Sigma}^{\square, \Gamma}$ is Cohen-Macaulay.

It follows from results in Section 2.3 that $A_{\Sigma_{p}}^{\square} /(\triangle, \lambda)$ is generically reduced. By Lemma 3.3 in [8], this proves that $A_{\Sigma}^{\square} /(\triangle, \lambda)$ is generically reduced. Furthermore, it follows that the localisation of A_{Σ}^{\square} at Γ is generically reduced. Since it is excellent, the completion $A_{\Sigma}^{\square, \Gamma}$ is generically reduced.

It follows from Lemma 3.3 in [8] that every prime of the localisation of A_{Σ}^{\square} at Γ, minimal amongst those containing λ, contains a unique minimal prime of the localisation. To pass to the completion, we make appeal to Proposition 1.6 in [89].

Proof of the proposition. Let \triangle denote a minimal ideal of Λ. We observe that the $A_{\Sigma_{\ell}}^{\square, \Gamma} / \triangle$ depth of $H_{\Sigma_{Q}}^{\square, \Gamma} / \triangle$ is greater than and equal to the $\left(\left[R^{\square}\left[\left[\Delta_{Q}\right]\right] \hat{\otimes} \Lambda\right]^{\Gamma} / \Delta\right)$-depth of $H_{\Sigma_{Q}}^{\square, \Gamma} / \triangle$; by the freeness, the latter equals the Krull dimension of $\left[R^{\square}\left[\left[\Delta_{Q}\right]\right] \hat{\otimes} \Lambda\right]^{\Gamma} / \Delta$ which is

$$
\begin{aligned}
& \left(1+[F: \mathbb{Q}]+2+\gamma_{F}\right)+4|T|+q-[F: \mathbb{Q}] \\
= & q+1+[F: \mathbb{Q}]+\gamma_{F}+4|T|
\end{aligned}
$$

where $T=S_{p} \cup S_{R} \cup S_{L} \cup S_{A}$.
It then follows from Lemma 27 that, when ζ is distinct, $H_{\Sigma_{Q}^{\square}}^{\square, \Gamma} / \triangle$ is nearly faithful over $A_{\Sigma_{Q}}^{\square, \Gamma} / \triangle$. By Lemma 2.2 in [83], $H_{\Sigma_{Q}}^{\square, \Gamma} /(\triangle, \lambda)$ is nearly faithful over $A_{\Sigma_{Q}}^{\square, \Gamma} /(\triangle, \lambda)$ in the case when ζ is trivial. By Lemma 2.2 in [83] again, $H_{\Sigma_{Q}}^{\square, \Gamma} / \triangle$ is nearly faithful over $A_{\Sigma_{Q}}^{\square, \Gamma} / \triangle$ and therefore $H_{\Sigma_{Q}}^{\square, \Gamma}$ is nearly faithful over $A_{\Sigma_{\ell}}^{\square, \Gamma}$. By Lemma 2.2 in [83], $H_{\Sigma_{\ell}}^{\square, \Gamma} / J \simeq H_{\Sigma}^{\Gamma}$ is nearly faithful over $A_{\Sigma_{\ell}}^{\square, \Gamma} / J \simeq A_{\Sigma}^{\square, \Gamma}$. Note that $A_{\Sigma}^{\square, \Gamma} \simeq A_{\Sigma_{\ell}}^{\square, \Gamma} / J \simeq R_{\Sigma_{\ell}}^{\square, \Gamma} / J \simeq R_{\Sigma}^{\Gamma}$.

On the other hand, one observes that p and the generators of J define a regular sequence of $A_{\Sigma_{Q}}^{\square, \Gamma}$. One then concludes, as in the proofs of Theorem 16 and Corollary 17 that $R_{\Sigma}^{\Gamma}[1 / p] \simeq A_{\Sigma}^{\square, \Gamma}[1 / p]$ is reduced. On the other hand, $R_{\Sigma_{Q}}^{\square, \Gamma} \simeq A_{\Sigma_{Q}}^{\square, \Gamma}$ is a noetherian local Cohen-Macaulay ring and p is $R_{\Sigma_{\ell}}^{\square, \Gamma} / J$-regular, R_{Σ}^{Γ} is p-torsion free and one concludes that R_{Σ}^{Γ} injects into $R_{\Sigma}^{\Gamma}[1 / p]$ and therefore that R_{Σ}^{Γ} is reduced. Because of this, the nearly faithfulness of H_{Σ}^{Γ} over R_{Σ}^{Γ} is promoted to the faithfulness.

Proposition 28. Any prime contained in an admissible prime Γ in R_{Σ} is pro-modular.
Proof. By definition, Γ contains $J=\operatorname{ker}\left(r: R_{\Sigma} \rightarrow T_{\Sigma}\right)$. It suffices to show that a minimal prime \triangle, contained in Γ, contains J. By Proposition $25, J R_{\Sigma}^{\Gamma}=0$. Since $R_{\Sigma, \Gamma} \rightarrow R_{\Sigma}^{\Gamma}$, where $R_{\Sigma, \Gamma}$ denote the localisation of R_{Σ} at Γ, is faithfully flat, $J R_{\Sigma, \Gamma}=0$. It therefore follows that the ideal $J R_{\Sigma, \Delta}$ of the localisation $R_{\Sigma, \Delta}$ is 0 , and $J \subset \triangle$.

5.4 Finding Γ

Lemma 29. Suppose that E is a quadratic extension of F in which not every place of F above p splits completely; and suppose that $\bar{\rho}$ is E-dihedral. If $\Gamma \subset R_{\Sigma}$ is a prime as defined at the beginning of Section 5, then the lifting ρ_{Γ} of $\bar{\rho}$ over R_{Γ} is not dihedral.

Proof. If ρ_{Γ} were dihedral, it would be E-dihedral and it would follow from Lemma 2.2.1 in [79] that every prime of F above p splits completely in E. This contradicts the assumption on E.

When the quadratic extension E, from which $\bar{\rho}$ is induced, is totally real over F (e.g. $E=$ $F^{+} \subset F\left(\zeta_{p}\right)$ when $p>2$), it is possible to allow every place of F above p to split completely in E. In fact, it is possible to ascertain that ρ_{Γ} is not E-dihedral at all (even if it is still dihedral). To this end, let E be a totally real quadratic extension of F and let E_{S} denote the maximal pro-p-extension of E unramified outside the places above S such that $\operatorname{Gal}(E / F)$ acts non-trivially on $\operatorname{Gal}\left(E_{S} / E\right)$.

Suppose that $E=(E \cap A(\mathbb{Q})) F$ where $A(\mathbb{Q})$ is the maximal abelian extension of \mathbb{Q}.
Lemma 30. The \mathbb{Z}_{p}-rank $\operatorname{rk} \operatorname{Gal}\left(E_{S} / E\right)$ of $\operatorname{Gal}\left(E_{S} / E\right)$ satisfies $\operatorname{rkGal}\left(E_{S} / E\right) \leq[F: \mathbb{Q}]-[F \cap$ $A(\mathbb{Q}): \mathbb{Q}]$.

Proof. By assumption, $E \cap A(\mathbb{Q})$ is a abelian, totally real quadratic extension of $F \cap A(\mathbb{Q})$. Hence the \mathbb{Z}-rank of $(E \cap A(\mathbb{Q}))^{\times}$is $2[F \cap A(\mathbb{Q}): \mathbb{Q}]-1$, and the subgroup Γ of the units $(E \cap A(\mathbb{Q}))^{\times}$ on which $\operatorname{Gal}((E \cap A(\mathbb{Q})) /(F \cap A(\mathbb{Q})))$ acts non-trivially has \mathbb{Z}-rank $2[F \cap A(\mathbb{Q}): \mathbb{Q}]-1-$ $([F \cap A(\mathbb{Q}): \mathbb{Q}]-1)=[F \cap A(\mathbb{Q}): \mathbb{Q}]$. It follows from the Leopoldt 'conjecture' for abelian extensions of \mathbb{Q} that the closure $\bar{\Gamma}$ of Γ in the p-adic completion $\overline{\mathscr{O}}_{E}^{\times}$of \mathscr{O}_{E}^{\times}where $\operatorname{Gal}(L / F)$ acts non-trivially, has rank at least $[F \cap A(\mathbb{Q}): \mathbb{Q}]$. We then deduce that $\operatorname{rk} \operatorname{Gal}\left(E_{S} / E\right)=\operatorname{rk} \overline{\mathscr{O}}_{E}^{\times} / \bar{\Gamma} \leq$ $[F: \mathbb{Q}]-[F \cap A(\mathbb{Q})]$.

Lemma 31. If I be an ideal of R_{Σ} such that

- the determinant of $\rho_{I}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(R_{\Sigma}\right) \rightarrow \mathrm{GL}_{2}\left(R_{\Sigma} / I\right)$ is of finite order,
- the Krull dimension $\operatorname{dim} R_{\Sigma} / I>([F: \mathbb{Q}]-[F \cap A(\mathbb{Q}): \mathbb{Q}])+1$,
then ρ_{I} is not E-dihedral for any totally real quadratic extension E of F satisfying $E=(E \cap A(\mathbb{Q})) F$.
Proof. If ρ_{I}, whose determinant is of finite order, were E-dihedral, then $\bar{\rho}$ would be E-dihedral and we might think of $\mathscr{O}\left[\left[\operatorname{Gal}\left(E_{S} / E\right)\right]\right]$ as the universal ring for E-dihedral deformations of the E-dihedral $\bar{\rho}$ whose determinant equals the Teichmuller lift of $\operatorname{det} \bar{\rho}$; the natural quotient $R_{\Sigma} \rightarrow$ R_{Σ} / I would factor as a composite $R_{\Sigma} \rightarrow \mathscr{O}\left[\left[\operatorname{Gal}\left(E_{S} / E\right)\right]\right] \rightarrow R_{\Sigma} / I$ of surjections, but this is impossible as $\operatorname{dim} R_{\Sigma} / I>([F: \mathbb{Q}]-[F \cap A(\mathbb{Q}): \mathbb{Q}])+1 \geq \operatorname{rkGal}\left(E_{S} / E\right)+1$.

Proposition 32. Suppose that F satisfies the following conditions:

- $\left[F_{\mathrm{v}}: \mathbb{Q}_{p}\right]>4\left|S_{R}\right|$ for every place v of F above p,
- the degree $[F \cap A(\mathbb{Q})$: $\mathbb{Q}]$ of the maximal abelian subextension of F over \mathbb{Q} is strictly greater than $4\left|S_{R}\right|$.

Then R_{Σ} contains an admissible prime.
Proof. We make appeal to Lemma 1.9 in [89]. The determinant of the universal Galois representation $\rho_{\Sigma}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(R_{\Sigma}\right)$ defines a map $\Lambda^{p} \rightarrow \Lambda \rightarrow R_{\Sigma}$ and let Δ_{Σ} denote the ideal of R_{Σ} generated by the image.

Let S be the quotient $R_{\Sigma} /\left(\lambda, J, \Delta_{\Sigma}\right)$, where J denotes the kernel of $R_{\Sigma} \rightarrow T_{\Sigma}$. Let X_{Σ} denote a family of countably many ideals in R_{Σ}. If there exists a non-negative integer N such that $\operatorname{dim} S \geq$ N and $\operatorname{dim} S / I_{S}<N$ holds for the image I_{S} of every ideal I in X_{Σ}, then it follows that there exists a co-height one prime Γ of R_{Σ} that does not contain any I in X_{Σ}. Indeed a such prime will satisfies all the conditions for it to be admissible except that ρ_{Γ} is trivial at the places in S_{R}.

We define $N=[F: \mathbb{Q}]-4\left|S_{R}\right|$ (this is positive by the first assumption). For X_{Σ}, we choose

- the image of the ideal I_{v} of Λ, for every place v above p, corresponding to the subset of two identical characters of Δ_{v}; by assumption,

$$
\operatorname{dim} S / I_{\mathrm{v}} \leq\left(\operatorname{dim} \Lambda-\left(1+1+\gamma_{F}\right)\right)-\left[F_{\mathrm{v}}: \mathbb{Q}_{p}\right]=[F: \mathbb{Q}]-\left[F_{\mathrm{v}}: \mathbb{Q}_{p}\right]<N
$$

holds,

- the ideal $I=\operatorname{ker}\left(R_{\Sigma} \rightarrow \mathscr{O}\left[\left[\operatorname{Gal}\left(E_{S} / E\right)\right]\right]\right)$ when $\bar{\rho}$ is E-dihedral for a totally real quadratic extension E over F (in which every place of F above p may, or may not, split completely in $E)$; by assumption and Lemma 30,

$$
\operatorname{dim} S / I \leq \operatorname{dim} \mathbb{F}\left[\left[\operatorname{Gal}\left(E_{S} / E\right)\right]\right] \leq[F: \mathbb{Q}]-[F \cap A(\mathbb{Q}): \mathbb{Q}]<N
$$

holds.
Let $\mathfrak{m}_{\mathrm{v}}^{\zeta} \subset R_{\Sigma}$, for every place v in S_{R}, denotes the image of the maximal ideal $\mathfrak{m}_{\mathrm{v}}^{\square, \zeta}$ of $R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square, \zeta}$ under $R_{\mathrm{v}}^{\square} / I_{\mathrm{v}}^{\square, \zeta} \rightarrow R_{\Sigma}^{\square} \rightarrow R_{\Sigma}$. Let I denote the ideal of R_{Σ} generated by $\left\{\mathrm{m}_{\mathrm{v}}^{\zeta}\right\}$. It then follows from Theorem 15.1 in [62] that $\operatorname{dim} S / I_{S} \geq \operatorname{dim} S-4\left|S_{R}\right| \geq[F: \mathbb{Q}]-4\left|S_{R}\right|=N$. Lemma 1.9 in [89] then finds an admissible prime.

Finally, we prove that, given the assumption on F at the beginning of the section, there cannot possibly be a component of R_{Σ} (i.e., a minimal ideal) that is not pro-modular.
Corollary 33. Let F be as assumed in the proposition. Suppose that $\left|S_{R}\right|>1$. Every prime of R_{Σ} is pro-modular.

Proof. Let A (resp. A^{\urcorner}) denote a set of minimal primes of R_{Σ} which are pro-modular (resp. not pro-modular), and suppose furthermore that A and $A\urcorner$ are disjoint and their union equals all the minimal primes of R_{Σ}. We know A is not empty by the existence of a admissible prime above, and it suffices to prove that $A\urcorner$ is empty. Suppose that $A\urcorner$ is not empty. It would then follows that there exist \triangle in A, and $\triangle\urcorner$ in $A\urcorner$ such that

$$
\left.\operatorname{dim} R_{\Sigma} /(\triangle, \triangle\urcorner\right) \geq c\left(R_{\Sigma}\right) \geq[F: \mathbb{Q}]+\gamma_{F}-2\left|S_{R}\right|-1
$$

Since \triangle is pro-modular, it contains J. As a result, $\left.R_{\Sigma} /(\triangle, \triangle\urcorner, \lambda, \Delta_{\Sigma}\right)$ is a quotient of $R_{\Sigma} /\left(\lambda, J, \Delta_{\Sigma}\right)$. Since
$\left.\operatorname{dim} R_{\Sigma} /(\triangle, \triangle\urcorner, \lambda, \Delta_{\Sigma}\right) \geq[F: \mathbb{Q}]+\gamma_{F}-2\left|S_{R}\right|-1-\left(1+1+\gamma_{F}\right)=[F: \mathbb{Q}]-2\left|S_{R}\right|-3 \geq N$
for N in the proof of Proposition 32, it then follows that there would be an admissible prime of R_{Σ} containing, in particular, $\left.\Delta\right\urcorner$. By Proposition 28, $\left.\Delta\right\urcorner$ would then be pro-modular, and this contradicts the assumption about $\triangle\urcorner$.

5.5 A quick reminder about pseudo-representation theory

A pseudo-representation $D: E \rightarrow R($ over $R)$ of dimension r is a polynomial law of degree r.
A pseudo-representation $D: E \rightarrow R$ is said to be of Cayley-Hamilton type (CH-type for short) if every element of E satisfies the characteristic polynomial of D. Let $T(D)$ denote the trace of D.

A pseudo-representation $D: E \rightarrow R$ is said to be of Azumaya type (A-type for short) if there exists a projective R of finite rank V over R such that it factors the pseudo-representation det : $\operatorname{End}(V) \rightarrow R$. If a pseudu-representation is A-type, it is of CH type.

A pseudo-representation $D: E \rightarrow R$ is said to be a pseudo-representation of Γ over R if $E=R[\Gamma]$. A pseudo-representation $R[\Gamma] \rightarrow R$ of Γ over R is said to be of CH-type (resp. A-type) if there exist

- a finitely generated R-module E (resp. $\operatorname{End}(V)$ for a projective R-module of finite rank V) which comes equipped with a pseudo-representation $D: E \rightarrow R($ resp. det : $\operatorname{End}(V) \rightarrow R)$
- $\rho: \Gamma \rightarrow E^{\times}$which gives rise to $\rho: R[\Gamma] \rightarrow E$
such that $R[G] \rightarrow R$ is given by

$$
\begin{gathered}
R[\Gamma] \xrightarrow{\rho} E \xrightarrow{D} R \\
\text { (resp. } R[\Gamma] \xrightarrow{\rho} \operatorname{End}(V) \xrightarrow{\text { det }} R \text {) }
\end{gathered}
$$

An algebra E over R is a generalised matrix algebra (GMA for short) if it comes equipped with a data of idempotents, or a GMA-structure over R, as defined in [9]. If E is a GMA, the GMA -structure defines a trace function we shall denote by $T(E): E \rightarrow R$. The following is stated as Lemma 3.1.3 of [91]:

Proposition 34. Given a GMA E over R, there is a CH pseudo-representation $D=D(E): E \rightarrow R$ with trace $T(D)=T(E)$.

Given a GMA-algebra E over R of type (1,1), there is an isomorphism of R-modules $E \simeq$ $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ where $A \simeq R, D \simeq R$ and B and C are finite R-algebras.

If $\left(D: E \rightarrow R, \rho: \Gamma \rightarrow E^{\times}\right)$is a CH pseudo-representation of Γ over R and if E is a GMA of type (1,1) over R, then pre-composing with $\rho: R[\Gamma] \rightarrow E$ defines a psedo-representation $(A: \Gamma \rightarrow R, D: \Gamma \rightarrow R, T=A+D: \Gamma \rightarrow R, X=B C: \Gamma \times \Gamma \rightarrow R)$ as defined in [96].

Let $D_{\mathbb{F}}: \mathbb{F}[\Gamma] \rightarrow \mathbb{F}$ be a pseudo-representation of Γ over \mathbb{F}. A pseudo-representation (D : $E \rightarrow R, \rho: \Gamma \rightarrow E^{\times}$) over a local ring R with residue field \mathbb{F} is a pseudo-deformation of $D_{\mathbb{F}}$ if $D \otimes_{R} \mathbb{F} \simeq D_{\mathbb{F}}$.

Proposition 35. Let $\bar{\rho}: \Gamma \rightarrow \mathrm{GL}\left(V_{\mathbb{F}}\right) \simeq \mathrm{GL}_{2}(\mathbb{F})$ be a representation of Γ over \mathbb{F}. Suppose that $\bar{\rho}$ is multiplicity-free and let $D_{\mathbb{F}}(\bar{\rho}): \mathbb{F}[\Gamma] \rightarrow \mathbb{F}$ denote the associated pseudo-representation of Γ over \mathbb{F}. If ($D: E \rightarrow R, \rho: \Gamma \rightarrow E^{\times}$) is a CH pseudo-deformation of $D_{\mathbb{F}}(\bar{\rho})$ over a noetherian local Henselian ring R with residue field \mathbb{F}, then E is a GMA algebra over R and $D(E)=D$.

Proof. This is stated as Theorem 3.2.2 in [91].
As before, let $\hat{\mathscr{C}}$ be the category of complete noetherian local \mathscr{O}-algebras with residue field isomorphic to \mathbb{F}. Let $S=S^{\bar{\rho}}$ denote the universal ring for pseudo-deformations $R[\Gamma] \rightarrow R$ of $D_{\mathbb{F}}(\bar{\rho})$ over $\hat{\mathscr{C}}$. There exists (Theorem 2.2.9 in [91]) a universal CH-pseudo-deformations (D_{S} : $\left.E_{S} \rightarrow S, \rho_{S}: \Gamma \rightarrow E_{S}^{\times}\right)$of $D_{\mathbb{F}}(\bar{\rho})$ over S. The CH-algebra E_{S} is given as the 'maximal CH quotient of $S[\Gamma]$ and factors the universal pseudo-deformation $S[\Gamma] \rightarrow S$ of $D_{\mathbb{F}}(\bar{\rho})$ as

$$
S[\Gamma] \xrightarrow{\rho_{S}} E_{S} \xrightarrow{D_{S}} S
$$

The local conditions prescribed by a deformation data Σ single out CH-pseudo-deformations satisfying conditions (Section 2.3 in [91]), which we shall refer to as CH pseudo-deformations of type Σ, and there exists a universal CH-pseudo-deformations of $D_{\mathbb{F}}(\bar{\rho})$ of type Σ over the quotient $S_{\Sigma}^{\bar{p}}$ of $S^{\bar{\rho}}$ (Theorem 2.5.3 in [91]).

We define a pseudo-deformation $D: R[\Gamma] \rightarrow R$ of $D_{\mathbb{F}}(\bar{\rho})$ to be of type Σ if the CH-module $E_{S} \otimes_{S} R$ over R is of type Σ. In this optic, the complete noetherian local ring $S_{\Sigma}^{\bar{\rho}}$ represents (Theorem 2.5.5 in [91]) the pseudo-deformations of $D_{\mathbb{F}}(\bar{\rho})$ of type Σ.

5.6 $\bar{\rho}$ is induced from a character of a CM field in which every place of F above p splits completely

We now suppose that F satisfies the following conditions (whether $p>2$ or $p=2$):

- F is even,
- $\bar{\rho}$ is irreducible,
- $\bar{\rho}$ is abelian when restricted to $\operatorname{Gal}(\bar{F} / E)$ for a quadratic imaginary extension E of F in which every place v of F above p splits completely.

We may suppose that $\bar{\rho}$ is induced from a character $\bar{\zeta}: \operatorname{Gal}(\bar{F} / E) \rightarrow \mathbb{F}^{\times}$. In particular, the restriction of $\bar{\rho}$ to $\operatorname{Gal}\left(F_{S} / E\right)$ is the direct sum of $\bar{\zeta}$ and its conjugate character $\bar{\zeta}_{c}$.

Suppose that the image of $\bar{\rho}$ is a dihedral group $D_{2 n}$ of order $2 n$. An abelian subgroup of $D_{2 n}$ of index 2 is either a cyclic subgroup of order n, or one of the two dihedral groups of order n. It therefore follows that, unless, $n=2$ or 4 , there is a unique index 2 abelian subgroup, a cyclic group C_{n} of order n generated by the 'roration'.

In the case of $D_{8}\left(\right.$ resp. $\left.D_{4}\right)$, it is either C_{4} or one of the two dihedral groups $D_{2} \simeq C_{2} \times$ C_{2} of order 4 (resp. one of the three abelian group isomorphic to C_{2}). However, by Dickson's classification of subgroups of $\mathrm{PGL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ (Theorem 2.47 in [25] for example), the image of $\bar{\rho}$ can be D_{8} or D_{4}, only when $p>2$.

In conclusion, unless $p>2$ and the image of $\bar{\rho}$ is isomorphic to D_{4} or D_{8}, the quadratic (imaginary) field extension E from which $\bar{\rho}$ is induced is unique.

We now recall a theory of CM forms in a manner similar to the one in Section 3.
Let F^{+}be an imaginary quadratic extension in which every place of F above p splits completely. Let Δ_{S} denote the pro- p completion of the Galois group of the maximal abelian pro-p extension of F^{+}unramified outside the set of places in F^{+}lying above those in S that do not ramify in F^{+}. Every place v of F above p is assumed to split completely in F^{+}and we choose one of the two places of F^{+}above v. This defines an injection of Λ into the group algebra $\Lambda_{S}=\mathscr{O}\left[\left[\Delta_{S}\right]\right]$ of \mathbb{Z}_{p}-rank $1+[F: \mathbb{Q}]+\gamma_{F}$.

There is a 'universal' character

$$
\operatorname{Gal}\left(\bar{F} / F^{+}\right) \rightarrow \Delta_{S} \hookrightarrow \Lambda_{S}^{\times},
$$

unramified outside the set of places in F^{+}lying above those in S that do not ramify in F^{+}, and its induction to $\operatorname{Gal}(\bar{F} / F)$ defines

$$
\rho_{S}: \operatorname{Gal}(\bar{F} / F) \rightarrow \Delta_{S} \hookrightarrow \operatorname{GL}_{2}\left(\Lambda_{S}\right)
$$

unramified outside S and locally split at every place of F above p.
As in Section 3, for an open compact subgroup U of $G\left(\mathbb{A}^{\infty}\right)$, let $S(U, L / \mathscr{O})$ denote the \mathscr{O} module of cusp forms (defined on a totally definite quaternion algebra over F) of trivial weight and level U on $G(\mathbb{A})$. Let $U^{[r]}$ be an open compact subgroup of $G(\mathbb{A})$ which is maximal compact hyperspecial at v outside S and reduces $\bmod r$-th power of π_{v} to the upper-triangular unipotent matrices at v in S_{p}. Let $e S(U, L / \mathscr{O})$ denote the direct limit of $e S\left(U^{[r]}, L / \mathscr{O}\right)$ over r. Let $C\left(\Delta_{S}, L / \mathscr{O}\right)$ denote the space of continuous functions on Δ_{S} with values in L / \mathscr{O}.

Hida proves that the construction $\phi \mapsto \theta(\phi)$ associating a Hecke character $\phi: F^{+\times} \backslash \mathbb{A}_{F+}^{\times} \rightarrow$ $\mathbb{C} \simeq \overline{\mathbb{Q}}_{p}$ to the (q-expansion of a) θ-series $\theta(\phi)$ can be p-adically interpolated to a correspondence

$$
\tau: C\left(\Delta_{S}, L / \mathscr{O}\right) \rightarrow e S(U, L / \mathscr{O})
$$

associating an element ϕ in $C\left(\Delta_{S}, L / \mathscr{O}\right)$ to a p-ordinary normalised eigenform $\theta(\phi)$, where U is defined such that if v is a finite place dividing either the relative conductor of ϕ in F or the relative discriminant of F^{+}over F, then $U_{\mathrm{v}} \subset \mathrm{GL}_{2}\left(\mathscr{O}_{F_{\mathrm{v}}}\right)$ is the pre-image, by $\mathrm{GL}_{2}\left(\mathscr{O}_{F_{\mathrm{v}}}\right) \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\mathrm{v}}\right)$ of the subgroup of upper triangular matrices.

Let $S(\tau, U, L / \mathscr{O})$ denote the image of τ in $e S(U, L / \mathscr{O})$, and let $S(\tau, U, \mathscr{O})$ denote the Pontryagin dual of $S(\tau, U, L / \mathscr{O})$. Let $T(\tau, U, \mathscr{O}) \subset \operatorname{End}(S(\tau, U, \mathscr{O}))$ denote the corresponding p-ordinary Hecke algebra as defined in Section 3. This is naturally a Λ_{S}-algebra, and let

$$
T_{S_{\tau}} \subset \operatorname{End}\left(S(\tau, U, \mathscr{O})_{\mathfrak{m}}\right)
$$

denote the localisation at the maximal ideal \mathfrak{m} corresponding to $\bar{\rho}$. It follows that there exists a F^{+}-dihedral representation

$$
\rho_{S_{\tau}}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(T_{\Sigma_{\tau}}\right)
$$

such that $\rho_{S_{T}}$ is split at v in S_{p}; and there is a Λ_{S}-algebra homomorphism, 'a Λ_{S}-adic form',

$$
T_{S_{\tau}} \rightarrow \Lambda_{S}
$$

sending $T_{\mathrm{v}}\left(\right.$ resp. $\left.S_{\mathrm{v}}\right)$ to $\operatorname{tr} \rho_{S}\left(\right.$ Frob $\left._{\mathrm{v}}\right)\left(\right.$ resp. $\left(\mathbf{N}_{F / \mathbb{Q}^{\mathrm{V}}}\right)^{-1} \operatorname{det} \rho_{S}\left(\right.$ Frob $\left.\left._{\mathrm{v}}\right)\right)$ for every place v not lying in S. By construction, this is an isomorphism.

If an imaginary quadratic extension F^{+}as above has relative discriminant D defined as the product of places in a subset S^{D} of (distinct) places in $S_{R} \cup S_{L}$ and ϕ is a character of F^{+}of conductor a product of (distinct) places in $\left(S_{R} \cup S_{L}\right)-S^{D}$, then $\theta(\phi)$ generates (via the JacquetLanglands correspondence) the subspace e $S_{\Sigma}\left(\tau, U_{\Sigma}, \mathscr{O}\right)$ of cusp forms with complex multiplication by F^{+}in $e S_{\Sigma}\left(U_{\Sigma}, \mathscr{O}\right)$ as defined in Section 3 (whether ζ is trivial or not). The correspoding Hecke algebra $T_{\Sigma_{\tau}} \subset \operatorname{End}\left(e S_{\Sigma}\left(\tau, U_{\Sigma}, \mathscr{O}\right)_{\mathfrak{m}}\right)$ defines an 'irreducible component' Spec $T_{\Sigma_{\tau}}$ of Spec T_{Σ}.

In terms of Galois representations, we have

$$
T_{S_{\tau}} \otimes_{\Lambda_{S}} R_{\Sigma} \simeq T_{\Sigma_{\tau}} .
$$

Proposition 36. Suppose that F satisfies the first condition in Proposition 32. Let ρ_{Σ} denote the universal deformation of $\bar{\rho}$ over R_{Σ}.

- If ρ_{Σ} is not dihedral, then there exists an admissible prime Γ of R_{Σ} such that the surjection $R_{\Sigma} \rightarrow T_{\Sigma}$ gives rise to an isomorphism

$$
R_{\Sigma}^{\Gamma} \simeq T_{\Sigma}^{\Gamma}
$$

- If ρ_{Σ} is dihedral, then R_{Σ} is pro-modular.
- Every prime of R_{Σ} is pro-modular.

Proof. Suppose that $\rho_{\Sigma}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(R_{\Sigma}\right)$ is not dihedral. In particular, ρ is not abelian when restricted to any one Δ of the possible abelian subgroups of index 2 in the image of $\bar{\rho}-$ as discussed at the beginning of Section 5.6, Δ is unique $(=\operatorname{Gal}(\bar{F} / E)$), unless $p>2$ and the image of $\bar{\rho}$ is isomorphic to D_{4} or D_{8} in which case there are three possible index subgroups).

By assumption, there exists a p-ordinary Hilbert modular eigenform Π whose associated Galois representation ρ_{Π} is of type Σ and defines a deformation of $\bar{\rho}$. Raising the level at a finite place v of F with $\mathbf{N}_{F / \mathbb{Q}} \equiv 1 \bmod p$ at which $\bar{\rho}$ is trivial (e.g. a place in S_{R} prescribed in Σ) if necessary, we may assume furthermore that ρ_{Π} is not dihedral of type Σ. This is possible because of the observation that the corresponding Hecke modules (denoted earlier by H_{Σ}), in the case where ' ζ ' is distinct and in the case where it is trivial, are congruent, and of the Deligne-Serre's Lemma 6.11 in [32]. Granted, there is a Λ-adic form

$$
T_{\Sigma} \rightarrow R
$$

passing through Π, over the integral closure R (whose dimension equal to $\operatorname{dim} T_{\Sigma}$) of a finite extension of the field of fractions of Λ. In particular, its associated representation $\rho=\rho_{\triangle}$: $\left.\operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(R)\right)$ is not dihedral.

Following Section 5.5, ρ gives rise to a free-module V of rank 2 over R such that ($D=\operatorname{det}$: $\left.\operatorname{End}(V) \rightarrow R, \rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{End}(V)^{\times}=\operatorname{GL}(V)\right)$ defines a pseudo-deformation of the pseudo-representation $D_{\mathbb{F}}(\bar{\rho})$ of $\operatorname{Gal}(\bar{F} / F)$ over \mathbb{F}. It follows from Proposition 35 that $\operatorname{End}(V)$ is isomorphic to

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

for some finitely generated R-modules A, B, C and D, and A and D are both isomorphic to R; and we may write $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(V)$ as

$$
\sigma \mapsto\left(\begin{array}{cc}
A(\sigma) & B(\sigma) \\
C(\sigma) & D(\sigma)
\end{array}\right)
$$

and $X(\sigma, \tau)=B(\sigma) C(\tau)$. Since ρ is irreducible, the map $\operatorname{Gal}(\bar{F} / F)$ acts non-trivially on B and C. It follows from the assumption- ρ is not dihedral- that for any possible index 2 abelian subgroup of $\operatorname{Gal}(\bar{F} / F)$, which we shall again denote by Δ by slight abuse of notation, the induced map on Δ also acts non-trivial on B and C simultaneously (since Δ is a normal subgroup of $\operatorname{Gal}(\bar{F} / F)$). Fixing Δ, it follows that there exist r and s in Δ such that $\mathfrak{Z}=X(r, s)$ is non-zero in R; and, for every element σ in Δ,

$$
\sigma \mapsto\left(\begin{array}{cc}
A(\sigma) & X(\sigma, s) / \mathfrak{L} \\
X(r, \sigma) & D(\sigma)
\end{array}\right)
$$

defines an irreducible (in particular, non-abelian) representation of Δ over $R^{\mathfrak{Q}}=R[1 / \mathfrak{Q}]$. Let $B^{\mathfrak{Q}}=B_{\Delta}^{\mathfrak{Q}}: \Delta \rightarrow R^{\mathfrak{Q}}$ denote the non-zero map sending σ to $X(\sigma, s) / \mathfrak{L}$. It follows, since R is a noetherian domain, that there is a height one prime $\Gamma^{\mathfrak{Q}}$ of $R^{\mathfrak{Q}}$ that does not contain the image of $B^{\mathfrak{Q}}$. Unless $\operatorname{dim} R^{\mathfrak{Q}} \leq 1$, there are infinitely many height one primes in $R^{\mathfrak{Q}}$, and only finitely many of them contain the image of $\boldsymbol{B}^{\mathfrak{R}}$. It therefore follows that one can find a such height one prime $\Gamma^{\mathfrak{R}}$ in $R^{\mathfrak{Q}}$ that does not contain the image of $B_{\Delta}^{\mathfrak{Q}}$ for every possible Δ. Let $S^{\mathfrak{Q}}$ denote $R^{\mathfrak{Q}} / \Gamma^{\mathfrak{Q}}$; the induced map $B^{\mathfrak{Q}}: \Delta \rightarrow S^{\mathfrak{Q}}$ remains non-zero (for every Δ). Since $\operatorname{dim} S^{\mathfrak{Q}} \leq \operatorname{dim} R^{\mathfrak{Q}}-1=\operatorname{dim} R-1$ (see [62], p.30), we may repeat the process to assume that $S^{\mathfrak{Q}}$ is a Dedekind domain (by replacing it by the integral closure in its field of fractions), or indeed a DVR (by localising it further at a generator of the ideal of $R^{\mathfrak{Q}}$ where $B^{\mathfrak{Q}}$ vanishes).

As in the proof of Lemma 2.13 in [80], it is then possible to construct a non-zero cocycle \bar{B} : $\operatorname{Gal}(\bar{F} / F) \rightarrow \mathbb{F}$ which remains non-zero when restricted to any index 2 subgroup Δ. Since $\bar{\rho}$ is (absolutely) irreducible, the centraliser of $\bar{\rho}$ is \mathbb{F}; and it follows that if \bar{B} were a coboundary, it would be (a scalar multiple of) the trivial cocycle by conjugation. Since \bar{B} is not trivial by definition, it is not a coboundary. Corresponding to the cocyle, there exists an infinitesimal deformation

$$
\bar{\rho}_{\mathbb{F}[\epsilon]}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(\mathbb{F}[\epsilon])
$$

of $\bar{\rho}$ of type Σ over the ring $\mathbb{F}[\epsilon]$ of dual numbers over \mathbb{F} which is not dihedral- in particular, for every possible index 2 subgroup Δ, its restriction to Δ is a non-trivial extension of the pair of conjugate constituents in the restriction of $\bar{\rho}$ at Δ.

The argument in the proof of Proposition 32 now works verbatim, with the kernel of $R_{\Sigma} \rightarrow$ $T_{\Sigma} \rightarrow \mathbb{F}[\epsilon]$ corresponding to $\bar{\rho}_{\mathbb{F}[\epsilon]}$ in place of R_{Σ}, to find a co-height one prime Γ in R_{Σ} whose corresponding representation $\rho_{\Gamma}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(R / \Gamma)$ specialises to $\bar{\rho}_{\mathbb{F}[\epsilon]}$. Since $\bar{\rho}_{\mathbb{F}[\epsilon]}$ is not dihedral, one concludes immediately that ρ_{Γ} is not dihedral. The isomorphism now follows from Theorem 25.

Suppose that ρ_{Σ} is F^{+}-dihedral for some quadratic extension F^{+}of F. By Lemma 31 and $\operatorname{dim} R_{\Sigma} / \Delta_{\Sigma} \geq \operatorname{dim} T_{\Sigma} / \Delta_{\Sigma} \geq \operatorname{dim} \Lambda / \Delta_{\Sigma}=\operatorname{dim} \Lambda_{p}=1+[F: \mathbb{Q}]$, we may assume F^{+}is CM, and furthermore assume, by the reducibility of ρ_{Σ} every place v of F that v splits completely in F^{+}. It then follows that there exists a 'specialisation' homomorphism $\Lambda_{S} \rightarrow R_{\Sigma}$. By composition, we have $T_{\Sigma_{\tau}} \rightarrow \Lambda_{S} \rightarrow R_{\Sigma}$ proving the pro-modularity. Indeed, it follows that $T_{\Sigma_{\tau}} \simeq R_{\Sigma}$ in this case.

An argument similar to the one in Corollary 33 proves that every prime of \boldsymbol{R}_{Σ} is pro-modular.

Remark. Let K denote the fixed field of \bar{F} by the kernel of ad $\bar{\rho}$. Let G_{S} denote the maximal abelian quotient of the Galois group of the maximal extension K_{S} of K unramified outside S and let $\Gamma_{S}=G_{S} / G_{S}^{p}$. Via the exact sequence

$$
0 \rightarrow \operatorname{Gal}\left(K_{S} / K\right) \rightarrow \operatorname{Gal}\left(K_{S} / F\right) \rightarrow \operatorname{Gal}(K / F) \rightarrow 0
$$

the \mathbb{F}_{p}-vector space Γ_{S} comes equipped with action of $\operatorname{Gal}(K / F)$ by conjugation. Let $I\left(\bar{\chi}_{c}\right)$ denote the representation of $\operatorname{Gal}\left(F_{S} / F\right)$ given by the induction of the character $\bar{\zeta} / \bar{\zeta}_{c}: \operatorname{Gal}\left(F_{S} / E\right) \rightarrow$ \mathbb{F}^{\times}. The work [34] proves that if $\operatorname{Hom}_{\mathbb{F}[G a l(K / F)]}\left(\Gamma_{S}, I\left(\bar{\chi}_{c}\right)\right)$ is non-zero (resp. zero), then ρ_{Σ} is non-dihedral (resp. dihedral); and that unless $\bar{\rho}$ is totally odd (which occurs only when $p=2$ in our setting), $\operatorname{Hom}_{\mathbb{F}[G a l(K / F)]}\left(\Gamma_{S}, I\left(\bar{\chi}_{c}\right)\right)$ is non-zero (see Remark 3.7 and Remark 3.12 in [34]). As remarked in Remark 3.19 in [34], the work [19] also an alternative approach (albeit in a more specific setting, e.g. $F=\mathbb{Q}$) to the problem of characterising exactly when p-ordinary deformation rings are dihedral or not.

$6 \bar{\rho}$ is reducible and non-trivial

6.1 Pseudo-deformation of type Σ

Let S be a finite set of places of F. Suppose that it is a disjoint union of sets $S_{p}, S_{R}, S_{L}, S_{A}, S_{\infty}$ as earlier defined. Suppose that

- $\bar{\chi}$ is unramified outside S,
- $\bar{\chi}$ is ramified at every infinite place of F, i.e. $\bar{\rho}$ is totally odd,
- $\bar{\chi}$ is trivial at $S_{p} \cup S_{R} \cup S_{L}$,
- $\bar{\chi}$ is unramified at v in S_{A} and $\bar{\chi}$ (Frob ${ }_{\mathrm{v}}$) is trivial (resp. non-trivial) if $p>2$ (resp. $p=2$).

As a result of these conditions, $\bar{\chi}$ is, in particular, non-trivial.
Let $\Gamma=\operatorname{Gal}\left(F_{S} / F\right)$. Let $\Sigma_{Q, N}$ denote the deformation data $\left(S \cup S_{Q, N}, T,\left\{L_{v}\right\}\right)$, where $S_{Q, N}$ is a set of places v of F such that $\mathbf{N}_{F / \mathbb{Q}}(\mathrm{v}) \equiv 1 \bmod p^{N}$ at which $\bar{\chi}$ is unramified.

A class \mathscr{D} in $\operatorname{Ext}_{\mathbb{F}[\Gamma]}^{1}(\bar{\chi}, 1)$ gives rise to a totally odd representation $\bar{\rho}_{\mathscr{D}}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ unramified outside S, whose semi-simplification is $\bar{\rho}=1 \oplus \bar{\chi}$.

Let $D_{\mathbb{F}}(\bar{\rho})$ denote the pseudo-representation $\mathbb{F}[\Gamma] \rightarrow \mathbb{F}$ associated to the representation $\bar{\rho}=$ $1 \oplus \bar{\chi}: \Gamma \rightarrow \mathrm{GL}_{2}(\mathbb{F})$.

Let P_{Σ} denote the universal ring for pseudo-deformations of $D_{\mathbb{F}}(\bar{\rho})$ of type Σ as defined in Section 5.5.

6.2 Modular pseudo-deformations

We follow the notation of Section 3. Let $\mathfrak{m}_{Q, N}$ be a maximal ideal of $e T_{\Sigma_{Q, N}}\left(U_{\Sigma_{Q, N}}\right)$ containing $T_{\mathrm{v}}-\left(1+\bar{\chi}\left(\right.\right.$ Frob $\left.\left._{\mathrm{v}}\right)\right)$ for evert v not lying in S and $U_{\mathrm{v}}-1$ for v in S_{p}, which gives rise to a pseudo-representation

$$
D_{\mathbb{F}}(\bar{\rho})_{Q, N}: \mathbb{F}[\Gamma] \rightarrow e T_{\Sigma_{Q, N}}\left(U_{\Sigma_{Q, N}}\right) / \mathfrak{m}_{Q, N} \simeq \mathbb{F}
$$

of GMA-type.
Lemma 37. Then there exists a pseudo-deformation

$$
D_{Q, N}:\left(e T_{\Sigma_{Q, N}}\left(U_{\Sigma_{Q, N}}\right)_{\mathfrak{m}_{Q, N}}\right)[\Gamma] \rightarrow e T_{\Sigma_{Q, N}}\left(U_{\Sigma_{Q, N}}\right)_{\mathfrak{m}_{Q, N}}
$$

of type Σ such that $T\left(D_{Q, N}\right)=T_{\mathrm{v}}$ for every v not lying in S.
As in Section 3, if $T_{\Sigma_{Q, N}}$ denotes the image of $e T_{\Sigma_{Q, N}}\left(U_{\Sigma_{Q, N}}\right)_{\mathfrak{m}_{\ell, N}}$ in $H_{\Sigma_{Q, N}}\left(U_{\Sigma_{Q, N}}\right)$, then the lemma gives rise to a homomorphism

$$
P_{\Sigma_{\ell, N}} \rightarrow T_{\Sigma_{Q, N}}
$$

6.3 Reducible subspaces and irreducible coverings

Let $P_{\Sigma, \Delta}$ denote the maximal reducible quotient of P_{Σ}. This is characterised by the property that if $D: R[\Gamma] \rightarrow R$ is a pseudo-deformation of $D_{\mathbb{F}}(\bar{\rho})$ of type Σ, then it gives rise to a unique map $P_{\Sigma} \rightarrow R$; and this map factors through $P_{\Sigma} \rightarrow P_{\Sigma, \Delta}$ if and only if D is reducible.

Since $\bar{\chi}$ is non-trivial, $\bar{\rho}$ is multiplicity-free. It therefore follows that the universal CH-module E_{Σ} over P_{Σ} is GMA of type $(1,1)$; and we may assume $\Gamma \rightarrow E_{\Sigma}^{\times}$to be of the form $\sigma \mapsto\left(\begin{array}{cc}A(\sigma) & B(\sigma) \\ C(\sigma) & D(\sigma)\end{array}\right)$ where $A(\sigma)$ (resp. $D(\sigma)$) reduces, modulo the maximal ideal of P_{Σ}, to 1 (resp. $\bar{\chi}$). The ideal $\operatorname{ker}\left(P_{\Sigma} \rightarrow P_{\Sigma, \Delta}\right)$ is generated by $X(\sigma, \tau)=B(\sigma) C(\tau)$ as σ and τ generated over Γ. Since P_{Σ} is noetherian, $\operatorname{ker}\left(P_{\Sigma} \rightarrow P_{\Sigma, \Delta}\right)$ is generated by finitely many elements $\{\mathfrak{L}\}$; and $\left\{\operatorname{Spec} P_{\Sigma}\left[\mathfrak{L}^{-1}\right]\right\}$
defines an open covering of the complement (the 'irreducible locus') Spec $P_{\Sigma}-\operatorname{Spec} P_{\Sigma, \Delta}$. For each \mathfrak{Z}, there exist r, s in Γ such that $X(r, s)=\mathfrak{Z}$; one easily checks that the map

$$
\sigma \mapsto\left(\begin{array}{cc}
A(\sigma) & X(\sigma, s) / \mathfrak{L} \\
X(r, \sigma) & D(\sigma)
\end{array}\right)
$$

defines a homomorphism, i.e. a representation, over $P_{\Sigma}\left[\mathfrak{Q}^{-1}\right]$ with $X(r, \sigma) X(\sigma, s) / \mathfrak{L}=X(r, s)=$ \mathfrak{L}. It therefore follows that $E_{\Sigma} \otimes_{P_{\Sigma}} P_{\Sigma}\left[\mathfrak{L}^{-1}\right]$ is of Azumaya-type. As in the proof of Proposition 36, knowing that $\sigma \mapsto X(\sigma, s) / \mathfrak{L}^{\text {is }}$ non-zero, one may conclude that there is a prime in $P_{\Sigma}\left[\mathbb{Q}^{-1}\right]$ (with a DVR quotient) for which the map remains non-zero upon specialising. As in the proof of Lemma 2.13 in [80], it is possible to define a cocycle $\mathscr{B}: \Gamma \rightarrow P_{\Sigma}\left[\mathfrak{Q}^{-1}\right] \rightarrow \mathbb{F}$. Note that this is not a coboundary as if it were, $\left(\begin{array}{cc}1 & \mathscr{B} \\ 0 & \bar{\chi}\end{array}\right)$ would be conjugated to $\left(\begin{array}{ll}1 & 0 \\ 0 & \bar{\chi}\end{array}\right)$ and this would contradict the universality of $P_{\Sigma, \Delta}$. The cocycle therefore defines a non-zero class \mathscr{D} in $\operatorname{Ext}^{1}(\bar{\chi}, 1)$ over \mathbb{F}.

Fixing \mathfrak{Z}, we let $P_{\Sigma, \nabla}$ denote $P_{\Sigma}\left[\mathfrak{L}^{-1}\right]$. Let $R_{\Sigma}^{\bar{\rho}_{\triangle}}$ denote the universal ring for deformations of $\bar{\rho}_{\mathscr{D}}$ of type Σ and $R_{\Sigma}^{\bar{\rho}_{\mathscr{D}}, \square}$ denote the universal ring for T-framed deformations of $\bar{\rho}_{\mathscr{D}}$ of type Σ. There is a natural map,

$$
P_{\Sigma} \rightarrow R_{\Sigma}^{\bar{\rho}_{\triangle}}
$$

given by the pseudo-deformation det : $R_{\Sigma}^{\bar{\rho}_{D}}[\Gamma] \rightarrow R_{\Sigma}^{\bar{\rho}_{D}}$.
Let $R_{\Sigma, \nabla}^{\bar{\Gamma}_{D}}$ denote $R_{\Sigma}^{\bar{\rho}_{D}} \otimes_{P_{\Sigma}} P_{\Sigma, \nabla}$. By definition, its spectrum is the pull-pack:

$$
\begin{array}{clc}
\text { Spec } R_{\Sigma, \nabla}^{\bar{\rho}_{\Phi}} & \rightarrow & \operatorname{Spec} P_{\Sigma, \nabla} \\
\downarrow & & \downarrow \\
\operatorname{Spec} R_{\Sigma}^{\bar{\rho}_{\triangle}} & \rightarrow & \operatorname{Spec} P_{\Sigma} .
\end{array}
$$

By Proposition 4.2.2 in [91], any specialisation of $\boldsymbol{R}_{\Sigma, \nabla}^{\bar{\rho}_{\mathscr{D}}}$ gives rise to an irreducible deformation of $\bar{\rho}_{\mathscr{D}}$ of $\operatorname{Gal}\left(F_{S} / F\right)$ of type Σ.
Lemma 38. $P_{\Sigma, \nabla}$ is isomorphic to $R_{\Sigma, \nabla}^{\bar{D}_{\mathscr{D}}}$.
Proof. It suffices to construct a section $R_{\Sigma, \nabla}^{\bar{\rho}_{\varnothing}} \rightarrow P_{\Sigma, \nabla}$ of the natural homomorphism $P_{\Sigma, \nabla} \rightarrow$ $R_{\Sigma, \nabla}^{\bar{\rho}_{\mathscr{D}}}$. It follows from the argument above that $E_{\Sigma} \otimes_{P_{\Sigma}} P_{\Sigma, \nabla}$ defines a lifting $\Gamma \rightarrow \mathrm{GL}_{2}\left(P_{\Sigma, \nabla}\right)$ for $\bar{\rho}_{\mathscr{D}}$ of type Σ over $P_{\Sigma, \nabla}$. Its conjugacy class therefore gives rise to a homomorphism $R_{\Sigma}^{\bar{\rho}_{\mathscr{D}}} \rightarrow P_{\Sigma, \nabla}$ by the universal property of $R_{\Sigma}^{\bar{\Gamma}_{\boldsymbol{D}}}$; indeed, this is an $P_{\Sigma \text {-algebra homomorphism. This gives rise, }}$
 seek.

6.4 Reducible non-split $\bar{\rho}$ and cuspidal eigenforms

Let $\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ be a continuous representation and suppose that its semi-simplification, up to twists, is $\left(\begin{array}{cc}1 & 0 \\ 0 & \bar{\chi}\end{array}\right)$ for a totally odd character $\bar{\chi}$. Let χ denote the Techmuller lifting of $\bar{\chi}$.

Let S denote the union of S_{p}, S_{∞} and the set of places in F at which χ is ramified. Let U_{S} denote the open compact subgroup of $\mathrm{GL}_{2}\left(\mathbb{A}_{F}^{\infty}\right)$ such that, for every v not in $S, U_{S} \cap \mathrm{GL}_{2}\left(F_{\mathrm{v}}\right)=$ $\mathrm{GL}_{2}\left(\mathscr{O}_{F_{\mathrm{v}}}\right)$; for every v in $S-S_{p}, U_{S} \cap \mathrm{GL}_{2}\left(F_{\mathrm{v}}\right)$ defines the subgroup of matrices in $\mathrm{GL}_{2}\left(\mathscr{O}_{F_{\mathrm{v}}}\right)$ that reduce mod the conductor $c_{\mathrm{v}}(\chi)$ at v to the matrices of the form $\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right)$; and for v in S_{p},
$U_{S} \cap \mathrm{GL}_{2}\left(F_{\mathrm{v}}\right)=\mathrm{GL}_{2}\left(F_{\mathrm{v}}\right)$. Let $U_{S}^{[r]}$ denote the subgroup of matrices in U_{S} such that, for every v in $\mathrm{S}_{p}, U_{S}^{[r]} \cap \mathrm{GL}_{2}\left(F_{\mathrm{v}}\right)$ defines the subgroup of matrices in $\mathrm{GL}_{2}\left(\mathscr{O}_{F_{\mathrm{v}}}\right)$ which reduce modulo $\mathfrak{m}_{F_{\mathrm{v}}}^{r}$ to the unipotent matrices. Let $S_{2}\left(U_{S}^{[r]}, \mathscr{O}\right)$ denote the \mathscr{O}-module of cusp forms for $\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}$ of parallel weight 2 and of level $U_{S}^{[r]}$. Let $T_{2}\left(U_{S}^{[r]}, \mathscr{O}\right) \subset \operatorname{End}\left(S_{2}\left(U_{S}^{[r]}, \mathscr{O}\right)\right)$ denote the Hecke algebra generated by T_{v} for v not lying in S and $U_{\mathrm{v}}=\left[U_{S}^{[r]}\left(\begin{array}{cc}1 & 0 \\ 0 & \pi_{\mathrm{v}}\end{array}\right) U_{S}^{[r]}\right]$ and $S_{\mathrm{v}}=\left[U_{S}^{[r]}\left(\begin{array}{cc}\pi_{\mathrm{v}} & 0 \\ 0 & \pi_{\mathrm{v}}\end{array}\right) U_{S}^{[r]}\right]$ for v in S_{p}.

Letting e denote the Hida idempotent, $e T_{2}\left(U_{S}^{[r]}, \mathscr{O}\right)$ defines an inverse system (with respect to $r)$ and we let $e T_{2}\left(U_{S}, \mathscr{O}\right)$ denote the limit.

The diamond operator $\left\rangle:\left(\mathscr{O}_{F} / p^{r}\right)^{\times} \rightarrow T_{2}\left(U_{S}^{[r]}, \mathscr{O}\right)^{\times}\right.$, as normalised in [49], extends to $\left\rangle:\left(\mathscr{O}_{F} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}\right)^{\times} / \overline{\mathscr{O}}_{F}^{\times} \rightarrow T_{2}\left(U_{S}, \mathscr{O}\right)^{\times}\right.$, while $\mathrm{v} \mapsto U_{\mathrm{v}} \in T_{2}\left(U_{S}^{[r]}, \mathscr{O}\right)$ extends to $U: \prod_{\mathrm{v}} F_{\mathrm{v}}^{\times} \rightarrow$ $T_{2}\left(U_{S}, \mathscr{O}\right)$. The 'Hida' nearly ordinary Hecke algebra $e T_{2}\left(U_{S}, \mathscr{O}\right)$ is a finite, torsion-free, algebra over $\Lambda=\Lambda_{p} \hat{\otimes} \Lambda_{p}$ via $\left.U\right|_{\Delta_{p}} \times\left.\langle \rangle\right|_{\Delta^{p}}$ (see [49] and [48]). There exists a Galois representation

$$
\rho_{S}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(e T_{2}\left(U_{S}, \mathscr{O}\right)\right)
$$

which is unramified outside $S, \operatorname{tr} \rho_{S}\left(\operatorname{Frob}_{\mathrm{v}}\right)=T_{\mathrm{v}}$ for every v not lying in S, det $\left.\rho_{S}\right|_{\Delta^{p}}=\left.\chi_{\mathrm{cyc}}\langle \rangle\right|_{\Delta^{p}}$ and, for every place v above p,

$$
\left.\rho_{S}\right|_{\Delta_{\mathrm{v}}} \sim\left(\begin{array}{cc}
\left.U\right|_{\Delta_{\mathrm{v}}} & * \\
0 & \left.\chi_{\mathrm{cyc}}\langle \rangle\right|_{\Delta_{\mathrm{v}}}\left(\left.U\right|_{\Delta_{\mathrm{v}}}\right)^{-1}
\end{array}\right) .
$$

Proposition 39. Suppose that the p-adic L-function $L_{p}\left(F,-1, \chi \omega^{-1}\right) \in \mathscr{O}$ (where ω denotes the Teichmuller lifting of the mod p cyclotomic character) is divisible by λ. Then there exists a non-Eisenstein maximal ideal $\mathfrak{m}_{S} \subset e T_{2}\left(U_{S}, \mathscr{O}\right)$ such that, if $\bar{\rho}_{\mathfrak{m}_{S}}: \operatorname{Gal}\left(F_{S} / F\right) \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ denote the corresponding Galois representation,

- \mathfrak{m}_{S} contains $T_{\mathrm{v}}-\left(1+\chi\left(\right.\right.$ Frob $\left.\left._{\mathrm{v}}\right)\right)$ for evert v not lying in S and $U_{\mathrm{v}}-1$ for v in S_{p},
- \mathfrak{m}_{S} contains the kernel of $\chi \omega^{-1}: \Delta^{p} \rightarrow \mathbb{F}$,
- $\bar{\rho}_{\mathfrak{m}_{S}}$, hence $\bar{\rho}$, is of the form $\left(\begin{array}{cc}1 & * \\ 0 & \bar{\chi}\end{array}\right)$ with non-zero $*$.

Proof. This is proved in Proposition 3.18 of [80] following Ribet's trick.

6.5 Pro-modularity of irreducible pseudo-deformations over $P_{\Sigma, \nabla}$ when $\bar{\rho}$ is a non-split extension of $\bar{\chi}$ of non-CM type

Fix a class \mathscr{D} in $\operatorname{Ext}_{\mathbb{F}[\Delta]}^{1}(\bar{\chi}, 1)$ and suppose that it is non-zero. Suppose that $\bar{\rho}_{\mathscr{D}}$ is not a (reducible) representation that is induced from an imaginary extension E of F in which every place of F above p splits completely. This is similar to the setting considered in 5.1. The assumption amounts to demanding that $\bar{\rho}_{\mathscr{D}}$ is not induced from a character $\bar{\zeta}$ of $\mathrm{Gal}(\bar{F} / E)$ such that the character $\bar{\zeta}_{c}$, obtained by conjugating $\bar{\zeta}$ by the order 2 generator c of $\operatorname{Gal}(E / F)$, is isomorphic to $\bar{\zeta}$.

Let Γ be a co-height one prime of $R_{\Sigma, \nabla}^{\bar{\rho}_{\mathscr{D}}}$ and let $R=R_{\Gamma}$ denote the normal closure of $R_{\Sigma, \nabla}^{\bar{\rho}_{\mathscr{D}}} / \Gamma$ in the field $K=K_{\Gamma}$ of fractions. The universal deformation of $\bar{\rho}_{\mathscr{D}}$ of type Σ gives rise to

$$
\rho: \operatorname{Gal}\left(F_{S} / F\right) \rightarrow \mathrm{GL}_{2}(R)
$$

and we assume

- $\rho \otimes_{R} K$ is irreducible,
- $\operatorname{det} \rho$ is of finite order,
- if $p>2, \rho$ is either non-dihedral or it is dihedral but not F^{+}-dihedral for the quadratic extension F^{+}of F in $F\left(\zeta_{p}\right)$; while if $p=2, \rho$ is not dihedral,
- ρ_{v}, at v above p, is reducible with distinct diagonal characters on the diagonal,
- ρ_{v} is trivial at every place v in S_{R},
- $\bar{\rho}_{\mathscr{D}}$ is Eisenstein modular, i.e. there exists \mathfrak{m} such that $\bar{\rho}_{\mathscr{D}} \simeq \bar{\rho}_{\mathfrak{m}}$.

Let $H_{\Sigma_{Q, N}}$ and $T_{\Sigma_{Q, N}}$ denote the Hecke module and Hecke algebra as defined earlier completed at the pre-image $\mathfrak{m}_{Q, N} \subset e T_{\Sigma_{Q, N}}\left(U_{\Sigma_{Q, N}}\right)$ (an Eisenstein maximal ideal) of \mathfrak{m}. Let $H_{\Sigma_{Q, N, V}}=$ $H_{\Sigma_{Q, N}} \otimes_{P_{\Sigma_{Q, N}}} P_{\Sigma_{\ell, N}, \nabla}$ and $T_{\Sigma_{Q, N}, \nabla}=T_{\Sigma_{Q, N}} \otimes_{P_{\Sigma_{Q, N}}} P_{\Sigma_{\ell, N}, \nabla}$

There is a surjection

$$
P_{\Sigma_{Q, N}, \nabla} \rightarrow T_{\Sigma_{Q, N}, \nabla} \subset \operatorname{End}\left(H_{\Sigma_{Q, N}, \nabla}\right)
$$

and a natural map

$$
P_{\Sigma_{Q, N}} \rightarrow R_{\Sigma_{Q, N}}^{\bar{\Gamma}_{\mathscr{D}}} \rightarrow R_{\Sigma_{Q, N}, \nabla}^{\bar{\rho}_{\mathscr{D}}}
$$

defined by the pseudo-representation associated to the universal deformation of type Σ over $R_{\Sigma_{\ell, N}}^{\bar{\rho}_{\mathscr{D}}}$.
Definition. We say that a prime ideal of $P_{\Sigma, \nabla}$ is pro-modular if it contains $\operatorname{ker}\left(P_{\Sigma, \nabla} \rightarrow T_{\Sigma, \nabla}\right)$. We say that a prime ideal of $R_{\Sigma, \nabla}^{\bar{\rho}_{\mathscr{D}}}$ is pro-modular if its contraction in $R_{\Sigma, \nabla}^{\bar{\rho}}$ is pro-modular.

We have

The representation ρ define coheight one primes in $\boldsymbol{\mu}_{\Sigma_{\ell, N}} \subset R_{\Sigma_{\ell, N}, \nabla}^{\bar{\rho}_{\Omega}, \square}$ and in $\boldsymbol{\mu} \subset A_{\Sigma}^{\square}$. Since Γ is pro-modular, there also is a co-height one prime in $T_{\Sigma_{Q, N}}^{\square}$ that pulls back to Γ. As in earlier sections, let $R_{\Sigma_{\ell, N}, \nabla}^{\bar{\rho}_{\Phi}, \square, \Gamma}, A_{\Sigma}^{\square, \Gamma}, T_{\Sigma_{\ell, N}, \nabla}^{\square, \Gamma}, H_{\Sigma_{\ell, N}, \nabla}^{\square, \Gamma}$ denote the completed localisations with respect to primes corresponding to Γ; if $p=2$, we also have $R_{\Sigma_{Q, N}, \nabla}^{\bar{p}_{\mathscr{D}}, \square} / \nabla_{Q, N}$ and the completed localisation $R_{\Sigma_{Q, N}, \nabla}^{\bar{\Gamma}_{\varnothing}, \square, \Gamma} / \nabla_{Q, N}$ with respect to the image of $\boldsymbol{\mu}_{\Sigma_{Q, N}}$ as before. In light of Lemma 38, we similarly have $P_{\Sigma_{Q, N, \nabla}}^{\square} / \nabla_{Q, N}$ and $P_{\Sigma_{Q, N, ~}}^{\square, \Gamma} / \nabla_{Q, N}$.

It follows from Corollary 23 with $R_{\Sigma, \nabla}^{\bar{\rho}_{\mathscr{D}}}$ in place of R_{Σ} that we have

if $p>2$. A similar diagram holds with $R_{\Sigma_{Q}, \nabla}^{\bar{\rho}_{\varnothing}, \square, \Gamma} / \nabla_{Q}\left(\right.$ resp. $P_{\Sigma_{\ell}, \nabla}^{\square, \Gamma} / \nabla_{Q}$, resp. $\left.A_{\Sigma_{Q}}^{\square, \nabla, \Gamma}=A_{\Sigma}^{\square, \Gamma}\left[\left[X_{1}, \ldots, X_{r-(2+q)}\right]\right]\right)$ in place of $R_{\Sigma_{Q}, \Gamma}^{\bar{\rho}_{\varnothing}, \square, \Gamma}\left(\right.$ resp. $P_{\Sigma_{Q}, \nabla}^{\square, \Gamma}$, resp. $\left.A_{\Sigma_{Q}}^{\square, \Gamma}\right)$.

Lemma 40. - $H_{\Sigma_{\varrho}, \nabla}^{\square, \Gamma}$ is a free module over $\left[R^{\square}\left[\left[\Delta_{Q}\right]\right] \hat{\otimes} \Lambda\right]^{\Gamma}$

- $H_{\Sigma_{Q}, \nabla}^{\square, \Gamma} / \operatorname{ker}\left(\Lambda \otimes R^{\square}\left[\left[\Delta_{Q}\right]\right] \rightarrow \Lambda\right) \simeq H_{\Sigma_{Q}, \nabla}^{\Gamma}$
- $A_{\Sigma_{\ell}}^{\square, \Gamma} \rightarrow R_{\Sigma_{Q}, \nabla}^{\bar{p}_{\Phi}, \square, \Gamma}\left(\right.$ resp. $\left.A_{\Sigma_{Q}}^{\square, \nabla, \Gamma} \rightarrow R_{\Sigma_{\Omega}, \Gamma}^{\bar{\rho}_{\Phi},,, \Gamma} / \nabla_{Q}\right)$ is surjective (resp. if $p=2$).

Proof. This can be proved exactly as in Lemma 26.
Proposition 41. The map $P_{\Sigma_{\ell}, \nabla}^{\square, \Gamma} \rightarrow R_{\Sigma_{Q}, \nabla}^{\bar{\rho}_{\varnothing}, \square, \Gamma}$ is an isomorphism.
Proof. This follows immediately from Lemma 38.
Theorem 42. $H_{\Sigma_{Q}, \nabla}^{\square, \Gamma}$ is a faithful module over $P_{\Sigma_{e}, \nabla}^{\square, \Gamma}\left(\right.$ resp. $\left.P_{\Sigma_{Q}, \nabla}^{\square, \Gamma} / \nabla_{Q}\right)$ and the surjection $P_{\Sigma_{e}, \nabla}^{\square, \Gamma} \rightarrow$ $T_{\Sigma_{Q}, \nabla}^{\square, \Gamma}\left(\right.$ resp. $\left.P_{\Sigma_{\ell}, \nabla}^{\square, \Gamma} / \nabla_{Q} \rightarrow T_{\Sigma_{\ell}, \nabla}^{\square, \Gamma}\right)$ is an isomorphism if $p>2$ (resp. if $p=2$).

Proof. We assume $p>2$. Lemma 27 continues to hold in the reducible case, except that the irreducibility of ρ_{Γ}, which we assume. Let Δ be a minimal prime of Λ.

We firstly observe that, by Lemma 40 and Proposition 41, one may think of Spec $P_{\Sigma_{\ell}, \nabla}^{\square, \Gamma} / \triangle$ as a closed subscheme of Spec $A_{\Sigma_{\ell}}^{\square, \Gamma}$:

$$
\operatorname{Spec} P_{\Sigma_{Q}, \nabla}^{\square, \Gamma} / \triangle \simeq \operatorname{Spec} R_{\Sigma_{\Omega}, \nabla}^{\bar{\rho}_{\Phi}, \square, \Gamma} / \triangle \hookrightarrow \operatorname{Spec} A_{\Sigma_{Q}}^{\square, \Gamma} / \triangle .
$$

The $P_{\Sigma_{Q}, \nabla}^{\square} / \triangle$-depth of $H_{\Sigma_{\ell}, \nabla}^{\square, \Gamma} / \triangle$ is greater than and equal to the depth of $H_{\Sigma_{\ell}, \nabla}^{\square, \Gamma} / \triangle$ as a module over $\left[R^{\square}\left[\left[\Delta_{Q}\right]\right] \hat{\otimes} \Lambda\right]^{\Gamma} / \triangle$. Since $H_{\Sigma_{Q}, \nabla}^{\square, \Gamma} / \triangle$ is free over $\left[R^{\square}\left[\left[\Delta_{Q}\right]\right] \hat{\otimes} \Lambda\right]^{\Gamma} / \triangle$, the latter equals

$$
\begin{aligned}
& \operatorname{dim}\left[R^{\square}\left[\left[\Delta_{Q}\right]\right] \hat{\otimes} \Lambda\right]^{\Gamma} / \triangle \\
= & q+1+[F: \mathbb{Q}]+\gamma_{F}+4|T| \\
= & \operatorname{dim} A_{\Sigma_{Q}}^{\Gamma} / \triangle \\
\geq & \operatorname{dim} R_{\Sigma_{Q}, \nabla}^{\bar{\Phi}_{\varnothing}, \square, \Gamma} / \triangle=\operatorname{dim} P_{\Sigma_{Q}, \nabla}^{\square, \Gamma} / \triangle .
\end{aligned}
$$

As a result, one deduces that the support of $H_{\Sigma_{Q}, \nabla}^{\square, \Gamma} / \triangle$ is a union of irreducible components of Spec $P_{\Sigma_{\ell}, \nabla}^{\square, \Gamma} / \triangle$.

When ζ is distinct, $\operatorname{Spec} A_{\Sigma_{\ell}}^{\square, \Gamma} / \triangle$ is irreducible and it therefore follows that

$$
\operatorname{Supp}_{P_{\Sigma_{Q}, \nabla}^{\square} / \Delta} H_{\Sigma_{Q}, \nabla}^{\square, \Gamma} / \triangle=P_{\Sigma_{Q}, \nabla}^{\square, \Gamma} / \triangle=A_{\Sigma_{Q}}^{\square, \Gamma} / \triangle
$$

and that $H_{\Sigma_{\ell}, \nabla}^{\square, \Gamma} / \triangle$ is also a nearly faithful module over $P_{\Sigma_{\ell}, \nabla}^{\square, \Gamma} / \triangle\left(\right.$ and over $A_{\Sigma_{\ell}}^{\Gamma} / \triangle$).
From now onwards, suppose that ζ is trivial. The repeated application of Lemma 2.2 in [83] then proves (the case ζ is trivial) that

$$
\operatorname{Supp}_{P_{\Sigma_{\ell}, \nabla}^{\square, \Gamma} / \Delta} H_{\Sigma_{Q}, \nabla}^{\square, \Gamma} / \triangle=P_{\Sigma_{\ell}, \nabla}^{\square, \Gamma} / \triangle=A_{\Sigma_{\ell}}^{\square, \Gamma} / \triangle
$$

and that $H_{\Sigma_{Q}}^{\square, \Gamma} / \triangle$ is a nearly faithful $P_{\Sigma_{Q}, \nabla}^{\square, \Gamma} / \triangle$-module. It also follows that p is $P_{\Sigma_{Q}, \nabla}^{\square, \Gamma} / \triangle$-regular since p is $A_{\Sigma_{\Omega}}^{\square, \Gamma} / \triangle$-regular (Proposition 27 proves that $A_{\Sigma_{\Omega}}^{\square, \Gamma} / \triangle$ is Cohen-Macaulay). On the other hand, $A_{\Sigma_{\ell}}^{\square, \Gamma} / \triangle[1 / p]$ is reduced and therefore $P_{\Sigma_{\varrho}, \nabla}^{\square, \Gamma} / \triangle[1 / p]$ is reduced, and the p-torsion freenes of $P_{\Sigma_{\ell}, \nabla}^{\square, \Gamma} / \triangle$ proves that $P_{\Sigma_{\ell}, \nabla}^{\square, \Gamma} / \triangle$ is reduced.

Applying Lemma 18 to $H_{\Sigma_{Q}, \nabla}^{\square, \Gamma}$, which is finitely generated with $H_{\Sigma_{Q}, \nabla}^{\square, \Gamma}[1 / p]$ faithful and CohenMacaulay over $P_{\Sigma_{Q}, \nabla}^{\square, \Gamma}$, one concludes that $\left(A_{\Sigma_{\ell}}^{\square, \Gamma} / J\right)[1 / p] \simeq\left(P_{\Sigma_{Q}, \nabla}^{\square, \Gamma} / J\right)[1 / p] \simeq\left(R_{\Sigma_{Q}, \nabla}^{\bar{\rho}_{\Phi}, \square, \Gamma} / J\right)[1 / p]$ is reduced. As $P_{\Sigma, \nabla}^{\Gamma} \simeq P_{\Sigma_{\varnothing}, \nabla}^{\square, \Gamma} / J$ is p-torsion free (since p in $P_{\Sigma_{\ell}, \nabla}^{\square, \Gamma}$ remains regular mod J, i.e. p is $P_{\Sigma, \nabla}^{\Gamma}$-regular), $P_{\Sigma}^{\Gamma} \simeq R_{\Sigma, \Sigma}^{\bar{\rho}_{\Phi}, \Gamma}$ are reduced. This concludes a proof of the first set of assertions.

To prove the second assertion, one observes that Lemma 2.2 in [83] proves $H_{\Sigma, \nabla}^{\Gamma} \simeq H_{\Sigma_{\varrho}, \nabla}^{\square, \Gamma} / J$ is nearly faithful over $P_{\Sigma, \nabla}^{\Gamma} \simeq P_{\Sigma \rho, \nabla}^{\square, \Gamma} / J$ but, as $P_{\Sigma, \nabla}^{\Gamma}$ is reduced, $H_{\Sigma, \nabla}^{\Gamma}$ is indeed faithful over $P_{\Sigma, \nabla}^{\Gamma}$. The isomorphism $R_{\Sigma, \nabla}^{\bar{\rho}_{\Phi}, \Gamma} \simeq T_{\Sigma, \nabla}^{\Gamma}$ holds because its kernel is zero by the faithfulness.

The case when $p=2$ follows similarly.
Proposition 43. Suppose that F satisfies the conditions of Proposition 32. Then $P_{\Sigma, \nabla}$ contains an admissible prime Γ and

$$
R_{\Sigma, \nabla}^{\bar{\rho}_{\Omega}, \Gamma} \simeq P_{\Sigma, \nabla}^{\Gamma} \simeq T_{\Sigma, \nabla}^{\Gamma}
$$

holds. Every prime of $P_{\Sigma, \nabla}$ is pro-modular.
Proof. Let \mathscr{D} be a non-zero co-cycle associated to the universal pseudo-deformation over $P_{\Sigma, \nabla}$. We may argue as in Proposition 32 and Proposition 36 to find a prime Γ in $R_{\Sigma, \nabla}^{\bar{\rho}_{\Phi}} \simeq P_{\Sigma, \nabla}$ satisfying all the conditions for it to be admissible except the irreducibility of the associated representation $\rho_{\Gamma}: \operatorname{Gal}\left(F_{S} / F\right) \rightarrow \mathrm{GL}_{2}(R)$ where R is isomorphic to $\mathbb{F}[[\pi]]$. However, we may, and will, easily ascertain Γ does not contain \mathfrak{L} in $P_{\Sigma, \nabla}$ and the irreducibility of ρ_{Γ} follows from R being a domain. The isomorphism $R_{\Sigma, \nabla}^{\bar{p}_{\Phi}, \Gamma} \simeq T_{\Sigma, \nabla}^{\Gamma}$ follows as in the Proof of Proposition 25, while the isomorphism $R_{\Sigma, \Sigma}^{\bar{\rho}_{\Phi}, \Gamma} \simeq P_{\Sigma, \nabla}^{\Gamma}$ is Proposition 41. The second assertion follows exactly as in Corollary 33.

6.6 Pro-modularity of irreducible pseudo-deformations over $P_{\Sigma, \nabla}$ when $\bar{\rho}$ is a non-split extension of $\bar{\chi}$ of CM type

Let E be an imaginary extension of F in which every place of F above p splits completely. Suppose that $\bar{\rho}_{\mathscr{D}}$ is induced from a character $\bar{\zeta}$ of $\operatorname{Gal}(\bar{F} / E)$. Since $\bar{\rho}_{\mathscr{D}}$ is, by assumption, reducible, the conjugate character $\bar{\zeta}_{c}$ is isomorphic to $\bar{\zeta}$. We may, and will, furthermore assume that the restriction of $\bar{\rho}$ to $\operatorname{Gal}(\bar{F} / E)$ is trivial, and hence assume that $\bar{\chi}$ is trivial upon restriction to $\operatorname{Gal}(\bar{F} / E)$, i.e. $\bar{\chi}$ factors through the character $\operatorname{Gal}(F / E) \rightarrow \mathbb{F}^{\times}$of order 2 associated to the extension E over F. However, since $\bar{\chi}$ is assumed to non-trivial, we may assume p to be odd.

Proposition 44. Suppose that F satisfies the first condition in Proposition 32. Let $\rho_{\Sigma, \nabla}^{D}$ denote the universal deformation of $\bar{\rho}_{\mathscr{D}}$ of type Σ over $R_{\Sigma, \nabla}^{\bar{\rho}_{\mathscr{D}}} \simeq P_{\Sigma, \nabla}$.

- If $\rho_{\Sigma, \nabla}^{D}$ is non-dihedral, then there exists an admissible prime Γ of $R_{\Sigma, \nabla}^{\bar{\rho}_{\mathscr{D}}}$ such that $R_{\Sigma, \nabla}^{\bar{\rho}_{\mathscr{D}}} \simeq P_{\Sigma, \nabla} \rightarrow$ $T_{\Sigma, \nabla}$ gives rise to an isomorphism

$$
R_{\Sigma, \nabla}^{\bar{\rho}_{\Phi}, \Gamma} \simeq P_{\Sigma, \nabla}^{\Gamma} \simeq T_{\Sigma}^{\Gamma} .
$$

- If $\rho_{\Sigma, \nabla}^{D}$ is dihedral, then $P_{\Sigma, \nabla}$ is pro-modular.
- Every prime of $P_{\Sigma, \nabla}$ is pro-modular.

Suppose that F satisfies the conditions of Proposition 32. Every prime of $P_{\Sigma, \nabla}$ is pro-modular.
Proof. This follows as in Proposition 36 with $P_{\Sigma, \nabla} \simeq R_{\Sigma, \nabla}^{\bar{\Gamma}_{\Phi}}$ in place of R_{Σ}.

6.7 Reducible split $\bar{\rho}$ and Eisenstein series, and pro-modularity of reducible deformations over $P_{\Sigma, \Delta}$

For an open compact subgroup U of $G\left(\mathbb{A}^{\infty}\right)$ which is hyper-special maximal compact to p, we let $Y_{U}(\mathbb{C})$ denote the union

$$
\bigoplus_{J} \Gamma(U, J) \backslash(\mathbb{C}-P)_{+}^{H}
$$

of quotients of $[F: \mathbb{Q}]$-copies of the complex upper half plane $(\mathbb{C}-P)_{+}$indexed by $H=$ $\operatorname{Hom}_{\mathbb{Q}}(F, P)$, where J ranges over a fixed set of representatives for the strict ideal class group $\mathbb{A}_{F}^{\times} / F^{\times}\left(U \cap \mathbb{A}_{F}^{\times}\right)\left(F \otimes_{\mathbb{Q}} P\right)_{+}^{\times}$and $\Gamma(U, J)$ denote the corresponding congruence subgroup of $\mathrm{GL}_{2}(F)_{+}$. We then let $X_{U}(\mathbb{C})$ denote its Bailey-Borel-Satake-Serre compactification; the boundary $X_{U}(\mathbb{C})-Y_{U}(\mathbb{C})$ is described as the union

$$
\bigoplus_{J} \Gamma(U, J) \backslash \mathbb{P}^{1}(F) .
$$

Let $C(\Gamma(U, J))$ denote the set of representatives for $\Gamma(U, J) \backslash \mathbb{P}^{1}(F)$. Similarly define $C\left(\Gamma\left(U^{[r]}, J\right)\right)$ with $U^{[r]}$ in place of U. For c in $C(\Gamma(U, J))$, we let $\Gamma_{c}(U, J)$ denote the stabliser of c in $\Gamma(U, J)$. Similarly define $\Gamma_{c}\left(U^{[r]}, J\right)$ for c in $C\left(\Gamma\left(U^{[r]}, J\right)\right)$.

We follow Hida [50] (and Harder [44]) to consider the p-ordinary 'Eisenstein/boundary cohomology'

$$
E_{s}^{[r]}=\bigoplus_{J} \bigoplus_{c \in C(\Gamma(U,))} e H^{\bullet}\left(\Gamma_{c}\left(U^{[r]}, J\right), \mathscr{O} / \lambda^{s}\right)
$$

at the degree $\bullet=[F: \mathbb{Q}]$ which corresponds to a system of cusps of level p^{r} over each c which are 'unramified at (every place of F above) p ' in the sense of [50]; the degree $\bullet=0$, on the other hand, corresponds to a system of cusps over c that are (totally) 'ramified at p '. The cohomology group comes equipped with natural action of the torus $\left(\begin{array}{cc}\left(\mathscr{O}_{F} / p^{r}\right)^{\times} & 0 \\ 0 & \left(\mathscr{O}_{F} / p^{r}\right)^{\times}\end{array}\right)$; we choose an isomorphism of the torus with $\left(\mathscr{O}_{F} / p^{r}\right)^{\times} \times\left(\mathscr{O}_{F} / p^{r}\right)^{\times}$by sending $\left(\begin{array}{ll}r & 0 \\ 0 & s\end{array}\right)$ to (r, s). Let E_{s} denote the limit of the direct system $\left\{E_{s}^{[r]}\right\}$ with respect to r (for a fixed s) and E the limit of of the direct system $\left\{E_{s}\right\}$ with respect to s. Fixing a sufficiently large ideal N of \mathscr{O}_{F} prime to p such that the principal congruence subgroup of level N is contained in U, we let $\Delta^{[r]}=\left(\mathscr{O}_{F} \otimes_{\mathbb{Z}}\right.$ $\left.\mathbb{Z}_{p}\right)^{\times} / \operatorname{ker}\left(\mathscr{O}_{F}^{\times} \rightarrow\left(\mathscr{O}_{F} / N p^{r}\right)^{\times}\right)$. The limit $\Delta^{[\infty]}$ of $\left\{\Delta^{[r]}\right\}$ has dimension $1+\gamma_{F}$ and its torsionfree part is non-canonically isomorphic to the torsion free part of Δ^{p}. Theorem 3.12 and Theorem 3.14 in [50] establish that the E is computed in terms of:

$$
\bigoplus_{J} \bigoplus_{c \in C\left(\Gamma\left(U, \Gamma_{j}\right)\right)} C\left(\Delta_{c}(U, J), L / \mathscr{O}\right) \times C\left(\Delta_{c}(U, J), L / \mathscr{O}\right)
$$

where $C\left(\Delta_{c}(U, J), L / \mathscr{O}\right)$ denotes the space of continuous functions (with values in ' L / \mathscr{O}^{\prime}) defined on the quotient $\Delta_{c}(U, J)$ of $\left(\mathscr{O}_{F} \otimes_{\mathbb{Z}} \mathbb{Z}\right)^{\times}$by the closure of the reductive quotient of $\Gamma_{c}(U, J)$, i.e. the quotient of $\Gamma_{c}(U, J)$ by the intersection of $\Gamma(U, J)$ and the unipotent radical of the stabiliser of c in B. One sees that E is naturally a finitely generated over $\mathscr{O}\left[\left[\Delta^{[\infty]}\right]\right] \hat{\otimes} \mathscr{O}\left[\left[\Delta^{[\infty]}\right]\right]$.

As in [49], [48], [47] and Theorem II of [50], Corollary 3.14in [50] asserts that the subspace of E killed by $\left(\operatorname{ker}\left(\chi_{\mathrm{cyc}} \circ \operatorname{Art}\right)^{\ell}, \operatorname{ker}\left(\chi_{\mathrm{cyc}} \circ \mathrm{Art}\right)^{k-2+\ell}\right)$ with $(k, \ell) \in \mathbb{Z} \times \mathbb{Z}$ and $k \geq 2$ 'specialises' to the space of Eisenstein series of weight k, twisted by $\left(\chi_{\text {cyc }} \circ \text { Art }\right)^{\ell} \circ$ det.

Remark. Since $U^{[r]} \subset G\left(\mathbb{A}^{\infty}\right)$ is defined to be the subgroup of those congruent to $\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)$ $\bmod p^{r}$ (rather than those congruent to $\left(\begin{array}{ll}* & * \\ 0 & 1\end{array}\right) \bmod p^{r}$ as in [50]), the cusps of level $\Gamma^{[r]}$ over c in $C(\Gamma)$ come in pairs, one for unramified and one for (totally) ramified (rather than only seeing the former). Geometrically, this corresponds to 'balanced level structure at p^{r} ' in the sense of KatzMazur in a neighbourhood of c. This viewpoint is consistent with, and expected from, work [51] and [52] of N. Katz in the 70s about constructions of 'Eisenstein measures', for example.

Let $T_{2}^{\Delta}\left(U_{S}, \mathscr{O}\right)$ denote the subalgebra in the endmorphism ring of E over $\mathscr{O}\left[\left[\Delta^{[\infty]}\right]\right] \hat{\otimes} \mathscr{O}\left[\left[\Delta^{[\infty]}\right]\right]$ (where $U=U_{S}$ is chosen to be the open compact subgroup of $G(\hat{\mathbb{Z}})$ consisting of those matrices which reduce to $\left(\begin{array}{ll}* & * \\ 0 & 1\end{array}\right)$ modulo the prime-to- p conductor of χ) generated over $\mathscr{O}\left[\left[\Delta^{[\infty]}\right]\right] \hat{\otimes} \mathscr{O}\left[\left[\Delta^{[\infty]}\right]\right]$ by T_{v} for v not lying in S and $U_{\mathrm{v}}, S_{\mathrm{v}}$ for v in S_{p}, and let T_{Δ} denote the localisation with respect to the maximal ideal of $e T_{2}^{\Delta}\left(U_{S}, \mathscr{O}\right)$ generated by $T_{\mathrm{v}}-\left(1+\bar{\chi}\left(\right.\right.$ Frob $\left.\left._{\mathrm{v}}\right)\right)$ for v not in S and $U_{\mathrm{v}}-1$, $S_{\mathrm{v}}-\bar{\chi}\left(\mathrm{Frob}_{\mathrm{v}}\right)$ for v in S_{p}. There exists a totally odd continuous lifting

$$
\rho_{S, \Delta}: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}_{2}\left(T_{\Delta}\right)
$$

of $\bar{\rho}$ which is a direct sum of characters, and is unramified outside $S, \operatorname{tr} \rho_{S, \Delta}\left(\right.$ Frob $\left._{\mathrm{v}}\right)=T_{\mathrm{v}}$ for every v not lying in S.

Let P_{Δ} denote the reducible quotient of the maximal quotient of the universal ring P for pseudo-deformations of $D_{\mathbb{F}}(\bar{\rho})$ defined by the conditions: if $\left(D: E \rightarrow P, \rho: \Gamma \rightarrow E^{\times}\right)$is the universal CH representation of $\Gamma=\operatorname{Gal}\left(F_{S} / F\right)$ over P deforming $D_{\mathbb{F}}(\bar{\rho})$, then ρ satisfies the deformation conditions prescribed by Σ at every place of F above p. By definition, $P_{\Sigma, \Delta}$ is a quotient of P_{Δ}.

Proposition 45. The reducible pseudo-deformation quotient $P_{\Sigma, \Delta}$ of P_{Σ} is pro-modular.
Proof. This follows from an isomorphism $P_{\Delta} \simeq T_{\Delta}$ which can be established as in Proposition 4.2.5 in [91].

Remark. If we let $\Lambda_{\Sigma, 1}$ (resp. $\Lambda_{\Sigma, 2}$) denote the universal \mathscr{O}-algebra, of relative dimension $1+\gamma_{F}$, for liftings of 1 (resp. $\bar{\chi}$) which are trivial at every place S_{R} and are trivial (resp. cyclotomic) when restricted to the inertia subgroup at every place in S_{L}, it is possible to establish: $P_{\Sigma, \Delta}$ (in the case ζ is trivial at every place in S_{R}) is isomorphic to $\Lambda_{\Sigma, 1} \hat{\otimes} \Lambda_{\Sigma, 2}$ as in the proof of in Proposition 4.2.5 in [91], and is isomorphic to the quotient $T_{\Sigma, \Delta}$ of T_{Δ} acting on the Λ-algebra of a Λ-adic Eisenstein series, defined similarly, but generated over $\Lambda_{\Sigma, 1} \hat{\otimes} \Lambda_{\Sigma, 2}$.

Remark. The proposition proves that every (globally) split lifting of $\bar{\rho}=1 \oplus \bar{\chi}$ arises from an Eisenstein series.

7 Main theorems

Theorem 46. Let $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(\mathscr{O})$ be a continuous representation of the absolute Galois group of a totally real field F such that

- ρ is totally odd,
- the image of the inertia subgroup at every finite place of F above p is finite.
- $\bar{\rho}=(\rho \bmod \lambda)$ is modular- there exists a cuspidal automorphic representation Π of $\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}$ whose associated p-adic Galois representation is isomorphic to $\bar{\rho}-$ when $\bar{\rho}$ is absolutely irreducible; and suppose furthermore than $\bar{\rho}$ is p-ordinary modular- Π is ordinary at every place of F above $p-$ when $p=2$ and $\bar{\rho}$ is unramified (i.e. trivial) at every infinite place of F.
- The semi-simplification of $\bar{\rho}$ is not scalar, i.e. not twist-equivalent to the trivial representation.

Then there exists a holomorphic modular eigenform of parallel weight 1 on $\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}$ whose associated p-adic representation of $\operatorname{Gal}(\bar{F} / F)$ is isomorphic to ρ. In particular, ρ has finite image.

Remark. As mentioned in Introduction, the fourth assumption is unnecessary when $p>2$. Indeed, in this case, the modularity of $\bar{\rho}$ (the third assumption) forces itself to be ramified/nontrivial at every infinite place of F.

Proof. We firstly observe that it is possible to replace F by its finite totally real soluble extension of F if necessary to assume $\bar{\rho}$ is of the form described in Section 2.8. In fact, we may choose it so that $\bar{\rho}$ is p-ordinary modular, if $\bar{\rho}$ is irreducible with insoluble (resp. soluble) image by virtue of [4], [5], [54], [90] and [87] (resp. Langlands-Tunnell and Hida theory). We secondly observe that there exists a finite totally real soluble extension of F for which the conditions of Proposition 32 hold. To this end, let ℓ be a fixed rational prime that does not divide any places in S; in particular, ℓ is distinct from p. We may choose a cyclotomic extension over F of degree a large power of ℓ such that the places of F in S all remain inert over any cyclotomic ℓ-extension of sufficiently large degree; this is possible, because every place of F in S splits completely only at finitely many 'layers' (and otherwise remains inert) over the cyclotomic \mathbb{Z}_{ℓ}-extension. We may therefore choose F^{\prime} in such a way that the conditions of Proposition 32 hold simultaneously. We shall call the resulting cyclotomic extension F again.

When $\bar{\rho}$ is reducible, we follow the argument in the proof of Theorem A in [80], with Lemma 11 in [23] and a construction (by [26], say) of p-adic L-function over totally real fields as our input, one finds an abelian totally real extension F^{\prime} of F such that $L_{p}\left(F^{\prime},-1, \chi \omega^{-1}\right) \in \mathscr{O}$ is divisible by λ - this is the assumption in Proposition 39 to show that there exists a non-Eisenstein maximal ideal of a Hecke algebra corresponding to $\bar{\rho}$.

Granted, we may assume:

- $\bar{\rho}$ satisfies the assumptions in Section 2.8 while maintaining the third and fourth assumptions on $\bar{\rho}$ in the statement of the theorem; in particular, there exists a finite set of places $S=$ $S_{p} \cup S_{R} \cup S_{L} \cup S_{A} \cup S_{\infty}$ such that $\bar{\rho}$ is unramified outside S and is trivial at $S_{p} \cup S_{R} \cup S_{L}$ and
the image of complex conjugation by $\bar{\rho}$ at every place in S_{∞} has determinant -1 (whether $p>2$ or not);
- ρ is totally odd and is unramified outside S;
- ρ is unramified at every place in S_{p} and there exists a partition $S_{p, \mathrm{~d}}$ and $S_{p, \mathrm{e}}$ of S_{p} such that $\rho\left(\right.$ Frob $\left._{\mathrm{v}}\right)$ has distinct (resp. equal) eigenvalues $\left\{\alpha_{\mathrm{v}}, \beta_{\mathrm{v}}\right\}$ (resp. $\alpha_{\mathrm{v}}=1$) if v lies in $S_{p, \mathrm{~d}}$ (resp. $S_{p, \mathrm{e}}$).

Given a subset $\Delta=\Delta_{\mathrm{d}} \cup \Delta_{\mathrm{e}} \subseteq S_{p, \mathrm{~d}} \cup S_{p, \mathrm{e}}=S_{p}$, the representation ρ gives rise to a map $\rho_{\Delta}: R_{\Sigma} \rightarrow \mathscr{O}[\epsilon]$, where $\mathscr{O}[\epsilon]$ is the completed tensor product of the ring of dual numbers $\mathscr{O}\left[\epsilon_{\mathrm{v}}\right]$ as v ranges over $S_{p, e}$, when we choose a root of the characteristic polynomial of $\rho\left(\right.$ Frob $\left._{\mathrm{v}}\right)$ to be $\left(1+\epsilon_{\mathrm{v}}\right) \alpha_{\mathrm{v}}\left(\right.$ resp. α_{v}, resp. $\left.\beta_{\mathrm{v}}\right)$ if v lies in $S_{p, \mathrm{e}}\left(\right.$ resp. $S_{p, \mathrm{~d}}-\Delta_{\mathrm{d}}$, resp. $\left.\Delta_{\mathrm{d}}\right)$.

Suppose that ρ is irreducible. It then follows from Propositions 25, 32, 36, 43 and 44 that there exists a map

$$
F_{\Delta}: T_{\Sigma} \rightarrow \mathscr{O}[\epsilon]
$$

for every $\Delta \subset S_{p}$ such that

- $T_{\mathrm{v}} F_{\Delta}=\operatorname{tr} \rho\left(\right.$ Frob $\left._{\mathrm{v}}\right) F_{\Delta}$ for every v not S;
- $U_{\mathrm{v}} F_{\Delta}=\alpha_{\mathrm{v}} F_{\Delta}$ if v lies in $S_{p, \mathrm{~d}}-\Delta_{\mathrm{d}}$, while $U_{\mathrm{v}} F_{\Delta}=\beta_{\mathrm{v}} F_{\Delta}$ if v lies in Δ_{d};
- $U_{\mathrm{v}} F_{\Delta}=\alpha_{\mathrm{v}} F_{\Delta}+F_{\Delta-\{\mathrm{v}\}}$ if v lies in Δ_{e} while $U_{\mathrm{v}} F_{\Delta}=\alpha_{\mathrm{v}} F_{\Delta}$ if v lies in $S_{p, \mathrm{e}}-\Delta_{\mathrm{e}}$.
as in Theorem 54 in [75]. For example, when ρ_{Δ} is irreducible with non-dihedral image (resp. with dihedral image), one can find an admissible prime Γ of R_{Σ} which contains the prime ideal corresponding to ρ_{Δ}, and F_{Δ} is given by $T_{\Sigma} \rightarrow T_{\Sigma}^{\Gamma} \simeq R_{\Sigma}^{\Gamma} \rightarrow \mathscr{O}[\epsilon]$ (resp. $T_{\Sigma} \rightarrow R_{\Sigma} \rightarrow \mathscr{O}[\epsilon]$).

Exactly as in the proof of Theorem 54 in [75], we then establish that the F_{Δ} define cuspidal overconvergent modular eigenforms of weight one and of 'level Iwahori at p ', after possibly increasing their levels at S but away from p to assume the eigenvalues at these places are all zero. The argument in Section 6.5 in [75] proves that they 'glue' to define a classical weight one form of level old at p whose associated Galois representation is ρ. This proves the modularity of ρ.

If ρ is reducible, then ρ arises from an Eisenstein series of parallel weight 1 (c.f. Proposition 45).

By making appeal to pro-modularity results and Hida theory, we also obtain the following theorem:

Theorem 47. Let $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}(\mathscr{O})$ be a continuous representation of the absolute Galois group of a totally real field F such that

- ρ is totally odd,
- the restriction of ρ to the decomposition subgroup at every finite place v of F above p is reducible, and is potentially semi-stable with (distinct) Hodge-Tate weight $\left(k_{\tau}+\ell_{\tau}-1, \ell_{\tau}\right)$ at τ in $H_{\mathrm{v}}=$ $\operatorname{Hom}_{\mathbb{Q}_{p}}\left(F_{\mathrm{v}}, L\right)$ for a pair of integers $k_{\tau} \geq 2$ and $\ell_{\tau} \geq 0$,
- $\bar{\rho}=(\rho \bmod \lambda)$ is modular- there exists a cuspidal automorphic representation Π of $\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}$ whose associated p-adic Galois representation is isomorphic to $\bar{\rho}-$ when $\bar{\rho}$ is absolutely irreducible; and suppose furthermore than $\bar{\rho}$ is p-ordinary modular- Π is ordinary at every place of F above $p-$ when $p=2$ and $\bar{\rho}$ is unramified (i.e. trivial) at every infinite place of F.
- The semi-simplification of $\bar{\rho}$ is not scalar, i.e. not twist-equivalent to the trivial representation.

Then there exists a holomorphic p-ordinary modular eigenform of weight (k, ℓ) on $\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}$, where $k=$ $\sum_{\tau \in H} k_{\tau} \tau$ and $\ell=\sum_{\tau \in H} \ell_{\tau} \tau$ and $H=\coprod_{\mathrm{v}} H_{\mathrm{v}}=\operatorname{Hom}_{\mathbb{Q}_{p}}(F, L)$, whose associated p-adic representation of $\operatorname{Gal}(\bar{F} / F)$ is isomorphic to ρ.

References

[1] P. Allen, Modularity of nearly ordinary 2-adic residually dihedral Galois representations, Compos. Math. 150 (2014), 1235-1346.
[2] P. Allen, J. Newton, \& J Thorne, Automorphy lifting for residually reducible l-adic Galois representations, II, Compos. Math. 156 (2020), 2399-2422.
[3] B. Balasubramanyam, E. Ghate \& V. Vastal, On local Galois representations associated to ordinary Hilbert modular forms, Manuscripta Math. 142 (2013), 513-524.
[4] T. Barnet-Lamb, T. Gee, \& D. Geraghty, Congruences between Hilbert modular forms: constructing ordinary lifts, Duke Math. J. 161 (2012), 1521-1580.
[5] T. Barnet-Lamb, T. Gee, \& D. Geraghty, Congruences between Hilbert modular forms: constructing ordinary lifts, II, Math. Res. Lett. 20 (2013), 67-72.
[6] T. Barnet-Lamb, T.Gee, \& D.Geraghty, Serre weights for rank two unitary groups, Math. Annalen 356 (2013), 1551-1598.
[7] T. Barnet-Lamb, T. Gee, D. Geraghty and R.Taylor, Potential automorphy and change of weight, Annals of Math. 179 (2014), 501-609.
[8] T. Barnet-Lamb, D. Geraghty, M. Harris, \& R. Taylor, A family of Calabi-Yau varieties and potential automorphy II, P.R.I.M.S. 47 (2011), 29-98.
[9] J. Bellaiche \& G. Chenevier, Families of Galois representations and Selmer groups, Astérisque, 324 (2009).
[10] G.Böckle, Presentations of universal deformation rings, in Proceedings of the LMS Durham Symposium, L-functions and Galois representations (D.Burns, K.Buzzard, J.Nekovár eds.), Cambridge University Press, 2007.
[11] M. Brodmann \& Y. Sharp, Local cohomology- an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 136, Cambridge University Press (2013)
[12] M.Brodmann \& J.Rung, Local cohomology and the connectedness dimension in algebraic varieties, Comment. Math. Helvetici 61 (1986), 481-490.
[13] W. Bruns \& J. Herzog, Cohen-Macaulay rings, Cambridge University Press (1998).
[14] W. Bruns \& U. Vetter, Determinantal rings, LNM 1327, Springer-Verlag (1988).
[15] K. Buzzard, Analytic continuation of overconvergent eigenforms J.A.M.S. 6 (2003), 29-55.
[16] K. Buzzard \& R. Taylor, Companion forms and weight one forms, Annals of Mathematics 149 (1999), 905-919.
[17] F. Calegari \& M. Emerton, On the ramification of Hecke algebras at Eisenstein primes, Invent. Math. 160 (2005), 97-144.
[18] F. Calegari \& D. Garaghty, Modularity lifting beyond the Taylor-Wiles method, Invent. Math. 211 (2018), 297-433.
[19] F. Castella \& C. Wang-Erickson, Class groups and local indecomposability of non-CM forms, with an appendix by Haruzo Hida, J. Eur. Math. Soc., 24 (2022),1103-1160.
[20] C.-L.Chai, Arithmetic compactification of the Hilbert-Blumenthalmoduli spaces (Appendix to A.Wiles, The Iwasawa conjecture for totally real fields), Annals of Math. 131 (1990), 541-554.
[21] G. Chenevier, The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings, in Proceedings of the LMS Durham Symposium, Automorphic forms and Galois representations (F. Diamond, P. Kassaei, and M. Kim eds.), Cambridge University Press, 2011.
[22] L. Clozel, M. Harris, \& R. Taylor, Automorphy for some l-adic lifts of automorphic mod l representations, Pub. Math. I.H.E.S. 108 (2008), 1-181.
[23] J. Coates \& W. Sinnott, Integrality properties of the values of partial zeta functions, Proc. London Math. Soc. 34 (1977), 365-384.
[24] J. Coates and S.-T. Yau eds., Elliptic curves, modular forms and Fermat's last theorem, International Press, (1995).
[25] H. Darmon, F. Diamond, \& R. Taylor, Fermat's Last Theorem in [24], 2-140.
[26] P. Deligne \& K. Ribet, Values of abelian L-functions at negative integers over totally teal fields, Invent. Math. 59 (1980), 227-286.
[27] P. Deligne \& J. P. Serre, Formes modulaires de poids 1, A.E.N.S. 7 (1974), 507-530.
[28] S. Deo \& G. Wiese, Dihedral universal deformations, Research in Number Theory, 6 (2020).
[29] S. Deo, M. Dimitrov, \& G. Wiese, Unramifiedness of weight one Hilbert Hecke algebras, preprint.
[30] F. Diamond, Geometric weight-shifting on Hilbert modular forms in characteristic p, preprint.
[31] F. Diamond, The Taylor-Wiles construction and multiplicity one, Invent. Math. 128 (1997), 379-391.
[32] F. Diamond \& S. Sasaki, A Serre weight conjecture for geometric Hilbert modular forms in characteristic p, preprint.
[33] F. Diamond \& S. Sasaki, A Serre weight conjecture for geometric Hilbert modular forms in characteristic p, II, preprint.
[34] M.Dimitrov \& G.Wiese, Unramifiedness of Galois representations attached to weight one Hilbert modular eigenforms $\bmod p$, J. Inst. Math. Jussieu 19 (2020), 281-306.
[35] M. Emerton, Local-global compatibility in the p-adic Langlands programme for $\mathrm{GL}_{2} / \mathbb{Q}$, preprint.
[36] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, GTM 150, SpringerVerlag (1995).
[37] J.-M. Fontaine \& B.Mazur, Geometric Galois representations, in [24], 190-227.
[38] T. Gee, Companion forms over totally real fields, II, Duke Math. J. 136 (2007), 275-284.
[39] T. Gee \& D. Geraghty, Companion forms for unitary and symplectic groups, Duke Math. J. 161 (2012), 247-303.
[40] T. Gee \& M. Kisin, The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum of Math, Pi 2 (2014).
[41] T. Gee \& J. Newton, Patching and the completed homology of locally symmetric spaces, to appear in J.I.M.J..
[42] D. Geraghty, Modular lifting theorems for ordinary Galois representations, Math. Ann. 373 (2019), 1341-1427.
[43] E. Ghate\& V. Vastal, On the local behaviour of ordinary Λ-adic representations, Ann. Inst. Fourier, Grenoble 54 (2004), 2143-2162
[44] G. Harder, Eisenstein cohomology of arithmetic groups. The case GL2, Invent. Math. 89 (1987), 37-118.
[45] Y. Hu \& V. Paškūnas, On crystabelline deformation rings of $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$, Math. Ann. 373, (2019), 421-487.
[46] H. Hida, Image of Λ-adic Galois representations $\bmod p$, Invent. Math. 194 (2013), 1-40.
[47] H. Hida, Nearly ordinary Hecke algebras and Galois representations of several variables, Proc. JAMI Conference, Supplement to Amer. J. Math. (1989), 115-134
[48] H. Hida, On nearly ordinary Hecke algebras for GL_{2} over totally real fields, Advanced Studies in Pure Math. 17 (1989), 139-169.
[49] H. Hida, On p-adic Hecke algebras for GL $_{2}$ over totally real fields, Annals of Math. 128 (1988), 295-384.
[50] H. Hida, p-ordinary cohomology groups for SL(2) over number fields, Duke Math. J. 69 (1993), 259-314.
[51] N. Katz, p-adic interpolation of real analytic Eisenstein series, Annals of Math. 104 (1976), 459-571.
[52] N. Katz, p-adic L-functions for CM fields, Invent. Math. 49 (1978), 199-297.
[53] C. Khare, Mod p descent for Hilbert modular forms, Math. Res. Letters 7 (2000), 455-462.
[54] C. Khare \& J.Thorne, Automorphy of some residually S_{5} Galois representations, Math. Z. 286 (2017), 399-429.
[55] C. Khare \& J.P. Wintenberger, Serre's modularity conjecture (I), Invent. Math. 178 (2009), 485504.
[56] C. Khare \& J.P. Wintenberger, Serre's modularity conjecture (II), Invent. Math. 178 (2009), 505586.
[57] M. Kisin, Moduli of finite flat group schemes and modularity, Annals of Maths. 170 (2009), 10851180.
[58] M.Kisin, Modularity of 2-adic Barsotti-Tate representations, Invent. Math. 178 (2009), 587-634.
[59] M.Kisin, Modularity of 2-dimensional Galois representations, Current Developments in Mathematics Vol. 2005, International Press (2008), 191-230.
[60] J. Labute, Classification of Demushkin groups, Canad. J. Math. 19 (1967), 106-132.
[61] J. Manning \& J. Shotton, Ihara's lemma for Shimura curves over totally real number fields via patching, to appear in Math. Ann.
[62] H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, CUP (2002).
[63] J. Nekovář, On p-adic height pairings, Séminaire de Théorie des Nombres, Paris,1990-1991, Progr. Math., 108, 127-202. Birkhüser Boston, Boston (1993).
[64] L. Nyssen, Pseudo-représentations, Math. Ann. 306 (1996), 257-283.
[65] J.Neukirch, A.Schmidt \& K.Wingberg, Cohomology of number fields, Grundlehren der mathematischen Wissenschaften 323, Springer-Verlag (2000).
[66] L. Pan, On locally analytic vectors of the completed cohomology of modular curves, preprint.
[67] L. Pan, The Fontaine-Mazur conjecture in the residually reducible case, preprint.
[68] G.Pappas \& M.Rapoport, Local models in the ramified case I. The EL-case, Journal of Alg. Geom. 12 (2003), 107-145.
[69] G.Pappas \& M.Rapoport, Local models in the ramified case II. Splitting models, Duke Math. J. 127 (2005), 193-250
[70] V. Paškūnas, On 2-dimensional 2-adic Galois representations of local and global fields, Algebra and Number Theory, 10 (2016), 1301-1358.
[71] R. Pink, Compact subgroups of linear algebraic groups, J. Algebra 206 (1998), 438-504.
[72] K.Ribet, Report on p-adic L-functions over totally real fields, in Astérisque 61 (1979), 177-192.
[73] J. Rogawski \& J. Tunnell, On Artin L-functions associated to Hilbert modular forms of weight one, Invent. Math. 74 (1983), 1-42
[74] R. Roqueir, Caractérisation des caractères et Pseudo-caractères, J. of Algebra 180 (1996), 571-586.
[75] S. Sasaki, Integral models of Hilbert modular varieties in the ramified case, deformations of modular Galois representations, and weight one forms, Invent. Math. 215 (2019), 171-264.
[76] P. Scholze, On the p-adic cohomology of the Lubin-Tate tower, Ann. Sci. E. N. S. 51 (2018), 811-863.
[77] J. Shotton, Local deformation rings for 2-adic representations of $G_{\mathbb{Q}}, l \neq 2$, Appendix to [45].
[78] J. Shotton, Local deformation rings for GL_{2} and a Breuil-Mézard conjecture when $l \neq p$, Algebra and Number Theory 10 (2016), 1437-1475.
[79] C. Skinner, Nearly ordinary deformations of residually dihedral representations, preprint.
[80] C. Skinner \& A. Wiles, Residually reducible representations and modular forms, Pub. Math. IHES 89 (2000), 5-126.
[81] C. Skinner \& A. Wiles, Nearly ordinary deformations of residually irreducible representations, Ann. Fac. Sci. Toulouse. Math. 10 (2001), 185-215.
[82] A.Snowden, Singularities of ordinary deformation rings, Math. Z. 288 (2018) 759-781.
[83] R. Taylor, Automorphy for some l-adic lifts of automorphic $\bmod l$ representations. II, Pub. Math. I.H.E.S. 108 (2008), 183-239.
[84] R. Taylor, Galois representations associated to Siegel modular forms of low weight, Duke. Math. J. 63 (1991), 281-332.
[85] R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), 265-280.
[86] R.Taylor, On icosahedral Artin representations II, Amer. J. Math 125 (2003), 549-566.
[87] J. Thorne, A 2-adic automorphy lifting theorem for unitary groups over CM fields, Math. Z. 285 (2017), 1-38.
[88] J. Thorne, On the automorphy of l-adic Galois representations with small residual image, J. Inst. Math. Jussieu, 11 (2012) 855-920.
[89] J. Thorne, Automorphic lifting for residually reducible l-adic Galois representations, J. Amer. Math. Soc. 28 (2015), 785-870.
[90] J. Thorne, Automorphy of some residually dihedral Galois representations, Math. Ann. 364 (2016), 589-648.
[91] P. Wake \& C. Wang-Erickson, Deformation conditions for pseudorepresentations,
[92] M. Waldschmidt, A lower bound for the p-adic rank of the units of an algebraic number field, in Topics in classical number theory, Colloq. Math. Soc. János Bolayi, 34, North-Holland (1984), 1617-1650.
[93] L. Washington, Class numbers and \mathbb{Z}_{p}-extensions, Math. Ann. 214 (1975), 177-193.
[94] L. Washington, The non-p-part of the class number in a cyclotomic \mathbb{Z}_{p}-extension, Invent. Math. 49 (1978), 87-97.
[95] A. Wiles, On class groups of imaginary quadratic fields, J. London Math. Soc. 92 (2015), 411-426.
[96] A. Wiles, On ordinary λ-adic representations associated to modular forms, Invent. Math. 94 (1988), 529-573.
[97] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (1990), 493-540.

[^0]: ${ }^{1}$ Successful distillation of the argument in [80] initiated this paper.

