A Jacquet-Langlands relation between mod p Hilbert and quaternionic modular forms

Fred Diamond*

King's College London

25 July 2018, Rio de Janeiro ICM satellite conference on Automorphic Forms, Galois Representations and L-functions

* joint with Payman Kassaei and Shu Sasaki

The case of modular curves

A relation between mod *p* modular forms

- of weight 2, level $Np (p \nmid N)$
- and of weight $k \in [2, p + 1]$ and level N:

Theorem (Serre)

Suppose $p \nmid N$, N > 3. Let \mathcal{K} be the dualizing sheaf on $X_1(Np)_{\mathbb{F}_p}$, and define $\chi_m : \mathbb{F}_p \to \mathbb{F}_p$ by $x \mapsto x^m$ for $m = 1, \dots, p-1$. Then there is a Hecke-equivariant exact sequence:

$$\begin{array}{l} 0 \rightarrow H^0(X_1(N)_{\mathbb{F}_p}, \delta^m \omega^{p+1-m}) \rightarrow H^0(X_1(Np)_{\mathbb{F}_p}, \mathcal{K}(\infty))^{\chi_m} \\ \rightarrow H^0(X_1(N)_{\mathbb{F}_p}, \omega^{m+2}) \rightarrow 0, \end{array}$$

where δ is a trivial bundle twisting the action of T_q by q.

Motivating question

The relation reflects the exact sequence on étale cohomology arising from

$$0 \to \det{}^m \mathrm{Sym}^{p-1-m} \mathbb{F}^2_p \to \mathrm{Ind}_B^{\mathrm{GL}_2(\mathbb{F}_p)}(\chi_m \otimes 1) \to \mathrm{Sym}^m \mathbb{F}^2_p \to 0$$

Question: How does this generalize to the Hilbert modular setting?

The mod *p* geometry of $X_1(Np)$ is more complicated. So is the structure of $\operatorname{Ind}_B^{\operatorname{GL}_2(\mathbb{F}_{p^r})}\chi$. (Typically 2^{*r*} Jordan-Holder constituents.)

The answer involves a mod *p* Jacquet-Langlands relation.

Hilbert modular varieties

F totally real field, $d = [F : \mathbb{Q}]$, *p* unramified in *F*, Fix $\overline{\mathbb{Q}} \subset \overline{\mathbb{Q}}_p$ and $\overline{\mathbb{Q}} \subset \mathbb{C}$, so identifications:

$$\Sigma = \{ F \to \mathbb{R} \} \leftrightarrow \{ F \to \overline{\mathbb{Q}}_{p} \} \leftrightarrow \{ O_{F}/p \to \overline{\mathbb{F}}_{p} \}.$$

Fix $U \subset GL_2(A_F^{\infty})$, sufficiently small tame level.

Let *X* be the Hilbert modular variety of level *U* over $\overline{\mathbb{F}}_{p}$. So *X* is (the quotient by $O_{F,+}^{\times}$ of) a scheme representing Hilbert-Blumenthal abelian varieties with additional structure.

HMV's of level p

Let $X_0(p)$ (resp. $X_1(p)$) be the HMV over $\overline{\mathbb{F}}_p$ of level $U \cap U_0(p)$ (resp. $U \cap U_1(p)$) defined by Pappas. So $X_0(p)$ represents suitable degree- p^d isogenies $f : A \to A'$ of HBAV's (mod $O_{F,+}^{\times}$), and $X_1(p)$ is a closed subscheme of ker(f).

- ► *X* is smooth of dimension *d*,
- $X_0(p)$ is a complete intersection,
- $X_1(p)$ is finite flat over $X_0(p)$, hence Cohen-Macaulay.

Main object of interest:

Let \mathcal{K}_1 be the dualizing sheaf on $X_1(p)$, and consider

$$H^0(X_1(\rho),\mathcal{K}_1) = \oplus_{\chi} H^0(X_1(\rho),\mathcal{K}_1)^{\chi}$$

where χ runs over characters $(O_F/p)^{\times} \to \overline{\mathbb{F}}_p^{\times}$. Since $\pi : X_1(p) \to X_0(p)$ is finite flat,

$$\pi_*\mathcal{K}_1 = \mathcal{H}om_{\mathcal{O}_{X_0(p)}}(\pi_*\mathcal{O}_{X_1(p)},\mathcal{K}_0),$$

where \mathcal{K}_0 is the dualizing sheaf on $X_0(p)$. So $\pi_*\mathcal{K}_1 = \bigoplus_{\chi} \mathcal{L}_{\chi} \otimes \mathcal{K}_0$ where $\mathcal{L}_{\chi}^{-1} = (\pi_*\mathcal{O}_{X_1(p)})^{\chi^{-1}}$, and we're interested in

$$H^0(X_0(p), \mathcal{L}_\chi \otimes \mathcal{K}_0)$$

(weight 2 modular forms of level $U_1(p)$, character χ).

Components of $X_0(p)$

 $X_0(p)$ has 2^{*d*} types of irreducible components, indexed by subsets $\eta \subset \Sigma$:

$$X_0(
ho) = igcup_{\eta \subset \Sigma} X_{\eta},$$

where the X_{η} are the top Goren-Kassaei strata, so X_{η} is smooth of dimension *d*, defined by:

• Lie
$$(f^{\vee})_{\beta} = 0$$
 for $\beta \in \eta$

• Lie(
$$f$$
) _{$\phi^{-1}\beta$} = 0 for $\beta \notin \eta$

where *f* is the universal isogeny over $X_0(p)$.

Let
$$i_{\eta}: X_{\eta} \to X_0(p)$$
.

Lemma

There is a filtration $0 \subset \operatorname{Fil}^{d} \mathcal{K}_{0} \subset \cdots \subset \operatorname{Fil}^{0} \mathcal{K}_{0} = \mathcal{K}_{0}$ such that $\operatorname{gr}^{m} \mathcal{K}_{0} = \bigoplus_{|\eta|=m} \mathcal{F}_{\eta}$ and

$$\mathcal{F}_\eta = \emph{i}_{\eta_*}\mathcal{K}_\eta(\sum_{eta
otin \eta} \emph{Z}_{\eta,eta}),$$

where \mathcal{K}_{η} is dualizing on X_{η} and $Z_{\eta,\beta}$ is the divisor defined by the intersection $X_{\eta} \cap X_{\eta \cup \{\beta\}}$.

Key point: for each β , $Y_{\beta} = \bigcup_{\beta \in \eta} X_{\eta}$ and $Y'_{\beta} = \bigcup_{\beta \notin \eta} X_{\eta}$ are complete intersections, giving a corresponding short exact sequence. Combine these to get the filtration.

Upshot

Now we have a filtration on $(\pi_* \mathcal{K}_1)^{\chi}$ whose graded pieces are direct sums of line bundles supported on the X_{η} :

$$\mathcal{G}_\eta := \emph{i}_\eta^* \mathcal{L}_\chi \otimes \mathcal{K}_\eta (\sum_{eta
otin \eta} \emph{Z}_{\eta,eta}),$$

To understand these, we first prove (inspired by Pappas, Helm, Tian-Xiao) that the X_{η} are isomorphic to products of \mathbb{P}^{1} 's over quaternionic Shimura varieties.

Quaternionic Shimura varieties

For each η , define $\Sigma_{\eta} \subset \Sigma = \{F \to \mathbb{R}\}$ corresponding to

$$\{\beta\in\eta\,|\,\phi\circ\beta\not\in\eta\}\cup\{\beta\not\in\eta\,|\,\phi\circ\beta\in\eta\}.$$

(Note that $|\Sigma_{\eta}|$ is even.) Let D_{η} be the quaternion algebra over F ramified at exactly Σ_{η} (so unramified at all finite places). Choose/identify $(D_{\eta} \otimes \mathbb{A}^{\infty})^{\times} = \operatorname{GL}_{2}(\mathbb{A}_{F}^{\infty})$. Let $X^{D_{\eta}}$ be the (reduction of the canonical model of the) quaternionic Shimura variety of level (corresponding to) U. So $X^{D_{\eta}}$ is smooth of dimension $d - |\Sigma_{\eta}|$.

Theorem* (DKS)

 X_{η} is isomorphic to the fibre product over $X^{\Sigma_{\eta}}$ of the $\mathbb{P}(\mathcal{V}_{\beta})$ for $\beta \in \Sigma_{\eta}$, where \mathcal{V}_{β} is a rank two automorphic bundle on $X^{\Sigma_{\eta}}$. Moreover the isomorphisms (for varying U) are Hecke-equivariant.

 proved analogous result for the corresponding unitary Shimura varieties, still checking details of transfer.

Remarks

- The map (corresponding to) π_η : X_η → X^{Σ_η} is defined by (A → A') ↦ B, where A → B → A' is determined by η.
- \mathcal{V}_{β} is defined by $H^{1}_{dR}(B/S)_{\beta}$.
- The X_η were known to be products of P¹'s over strata in X (up to Frobenius factors), which in turn were known to be products of P¹'s over quaternionic Shimura varieties, but the composite doesn't give the above.

The graded pieces

Now we compute the factors \mathcal{L}_{χ} , \mathcal{K}_{η} , $Z_{\eta,\beta}$ of the constituents of $(\pi_*\mathcal{K}_1)^{\chi}$:

- Can write each L_χ as a product of powers of L_β (associated to corresponding fundamental characters).
- $Z_{\eta,\beta} = \mathcal{L}_{\beta}^{-1} \mathcal{L}_{\phi \circ \beta}^{p}$ (like partial Hasse invariants).
- Write each L_β in terms of tautological or automorphic bundles (according to whether β ∈ Σ_η), with signs determined by whether β ∈ η;
- K_η is the product of the O(-2)_β for β ∈ Σ_η and π^{*}_ηω²_β for β ∉ η (up to π^{*}_ηδ^{±1}_β).

The main result

Putting all this together, get $\mathcal{G}_{\eta}^{\Sigma_{\eta}} := \pi_{\eta,*}\mathcal{G}_{\eta}$ is precisely the automorphic bundle on $X^{B_{\eta}}$ whose weight matches the corresponding summand of

$$\operatorname{Ind}_{\mathcal{B}}^{\operatorname{GL}_2(\mathcal{O}_{\mathcal{F}}/p)}(\chi\otimes 1).$$

Moreover the $R^i \pi_{\eta,*} \mathcal{G}_{\eta} = 0$ for i > 0.

Theorem*

There is a Hecke-equivariant spectral sequence:

$$E_1^{m,n} = \bigoplus_{|\eta|=m} H^{m+n}(X^{\Sigma_{\eta}}, \mathcal{G}_{\eta}^{\Sigma_{\eta}}) \Rightarrow H^{m+n}(X_1(p), \mathcal{K}_1)^{\chi}.$$

Corollary*

There is a filtration on $H^0(X_1(p), \mathcal{K}_1)$ such that

$$\operatorname{gr}^m \hookrightarrow \oplus_{|\eta|=m} H^0(X^{\Sigma_\eta}, \mathcal{G}^{\Sigma_\eta}_\eta)$$

We don't know if these are surjective. (Can construct examples with $H^1(X^{\Sigma_{\eta}}, \mathcal{G}_{\eta}^{\Sigma_{\eta}}) \neq 0.$) Can at least hope the cokernels are Eisenstein...