$$\mu_{\rm Gal} \le \mu_{\rm Aut}$$

Shu Sasaki

5th September 2013

VERY PRELIMINARY DRAFT!

1 Introduction

These are lecture notes based on the one and half hour long lecture I gave at the workshop (17/12/2012-18/12/2012) about the Breuil-Mezard conjecture in Luxembourg.

The organisers of the workshop had asked me to explain Kisin's paper [4], in particular, 1.6.7 through to 1.7.16 of the paper, and the lecture inevitably followed the paper faithfully, given that my task was to explain Kisin's proofs.

Let p be a rational *odd* prime and let E be a finite extension of \mathbf{Q}_p . The p-adic local Langlands correspondence, as formulated by Breuil, 'sends' a two-dimensional continuous E-linear representation V of $\operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ to an admissible, unitary Banach space representation B(V) of $GL_2(\mathbf{Q}_p)$ defined over E, which is in compatible with the classical local Langlands correspondence and with the mod p local Langlands correspondence for these groups.

Colemz's construction of the *p*-adic local Langlands correspondence is via Fontaine's theory of (φ, Γ) modules. In particular, he proves an equivalence of categories by which one associates to V as above a (φ, Γ) -module D(V), and, when V is irreducible, construct B(V) from D(V); he also makes the observation that one can perform $V \mapsto D(V) \mapsto B(V)$ 'integrally', i.e., given a finite type \mathcal{O}_E module $T \subset V$, one can build $D(T) \subset D(V)$ and then $B(T) \subset B(V)$ compatibly; and furthermore that one can conversely recover D(T) from B(T). The last observation, dubbed \mathbf{V} , seems to be at the heart of Kisin's proof of the Breuil-Mézard and the Fontaine-Mazur conjectures, not least because the integrality allows him to 'count' representations of $\operatorname{Ga}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ and representations of $GL_2(\mathbf{Q}_p)$ by deformations (see [3]).

2 Kisin's paper

We shall do our best following Kisin's notation (with minor alterations); local class field theory is normalised so that uniformisers correspond to geometric Frobenii. Let

 $G_{\mathbf{Q}_p}$: the decomposition group $\operatorname{Gal}(\mathbf{Q}_p/\mathbf{Q}_p)$;

 $I_{\mathbf{Q}_p}$: the inertia subgroup of $G_{\mathbf{Q}_p}$;

E: a 'sufficiently large' finite extension of \mathbf{Q}_p with ring \mathcal{O} of integers, a uniformiser π , and residue field \mathbf{F} ;

 χ_{cyclo} : the *p*-adic cyclotomic character;

 ω_{cyclo} : the mod p cyclotomic character;

 $\overline{\rho}$: a two-dimensional representation over **F** of $G_{\mathbf{Q}_n}$;

k: an integer ≥ 2 ;

 τ : a representation $I_{\mathbf{Q}_p} \to GL_2(E)$ with open kernel of Galois type (i.e. it extends to a representation of the Weil group of \mathbf{Q}_p);

 $\sigma(\tau)$: the unique finite-dimensional irreducible representation of $GL_2(\mathbf{Z}_p)$ over $\overline{\mathbf{Q}}_p$ associated by Hanniart's inertial local Langlands σ in the appendix to the Breuil-Mézard paper;

 $\sigma_{\rm cr}(\tau)$: $\sigma(\tau)$ but additionally characterised by N = 0;

 $\begin{aligned} \sigma(k,\tau) &= \sigma(\tau) \otimes_E \operatorname{Sym}^{k-2} E^2; \\ \sigma_{\operatorname{cr}}(k,\tau) &= \sigma_{\operatorname{cr}}(\tau) \otimes_E \operatorname{Sym}^{k-2} E^2; \\ L_{k,\tau}: \text{ a } GL_2(\mathbf{Z}_p) \text{-stable } \mathcal{O} \text{-lattice in } \sigma(k,\tau); \end{aligned}$

 $L_{k,\tau,\mathrm{cr}}$: a $GL_2(\mathbf{Z}_p)$ -stable \mathcal{O} -lattice in $\sigma_{\mathrm{cr}}(k,\tau)$; $\overline{L}_{k,\tau}$: $L_{k,\tau}/\pi$

 $\begin{array}{l} \overline{L}_{k,\tau,\mathrm{cr}}^{\nu,\nu} : \overline{L}_{k,\tau,\mathrm{cr}}^{\nu}/\pi \\ \psi: \text{ a character } \mathbf{Q}_p^{\times} \to \mathcal{O}^{\times} \text{ such that its restriction to } \mathbf{Z}_p^{\times} \text{ equals } \chi_{\mathrm{cyclo}}^{k-2}(\det \tau)|_{\mathbf{Z}_p^{\times}}, \text{ which is the central } \end{array}$ character of $\sigma(k,\tau)$;

 $R^{\rm ps}({\rm tr}\,\overline{\rho})$: the universal pseudo-deformation ring of tr $\overline{\rho}$, thought of as a pseudo-representation of dimension two;

 $R(\overline{\rho})$: the universal deformation $W(\mathbf{F})$ -algebra of $\overline{\rho}$;

 $R^{\Box}(\overline{\rho})$: the universal framed deformation $W(\mathbf{F})$ -algebra of $\overline{\rho}$;

 $R^{\Box,\psi}(\overline{\rho})$: the universal framed deformation $W(\mathbf{F})$ -algebra of $\overline{\rho}$ with determinant $\psi\chi_{\text{cyclo}}$.

With k, τ, ψ as above fixed (and we will), we say that a two-dimensional representation V with a continuous action of $G_{\mathbf{Q}_{p}}$ is of type

$$\mathcal{D} = (k, \tau, \psi)$$

if V is potentially semi-stable of type τ with Hodge-Tate weights 0, k-1 and determinant $\psi \chi_{\text{cvclo}}$. By a two-dimensional pseudo-representation $G_{\mathbf{Q}_p}$ of type \mathcal{D} , we shall mean that it is the trace of a twodimensional representation V of type \mathcal{D} .

Let $R^{\Box,\psi}(k,\tau,\overline{\rho}), R^{\psi}(k,\tau,\overline{\rho})$ be quotients of $R^{\Box}(\overline{\rho}) \otimes_{W(\mathbf{F})} \mathcal{O}, R(\overline{\rho}) \otimes_{W(\mathbf{F})} \mathcal{O}$ respectively as defined in Proposition 1.1.1.

Suppose A is a noetherian local ring with maximal ideal \mathfrak{m} . For a finite A-module M, let e(M, A) (or e(A) if M = A denote the Hilbert-Samuel multiplicity in M of irreducible representations over A/\mathfrak{m} . Suppose furthermore that M comes equipped with an action of a group G. If Σ is a set of irreducible representations of G on finite-dimensional A/\mathfrak{m} -vector spaces. Let $e_{\Sigma}(M, A)$ denote the 'Hilbert-Samuel multiplicity' in M of representations isomorphic to representations in Σ (see section 1.3 of [4]).

$\mathbf{2.1}$ So far

Let $R^{ps}(tr \overline{\rho})$ be the universal pseudo-deformation ring of $tr \overline{\rho}$; as p is odd, the ring pro-represents the functor of continuous pseudo-deformations of tr $\overline{\rho}$ (see Lemma 1.4.2). One of the reasons Kisin works with 'pseudo-deformations' of tr $\overline{\rho}$ rather than 'deformations' of $\overline{\rho}$ seems to be that one has to deal with cases where $\overline{\rho}$ is reducible split, and pseudo-deformation theory seems to work better. Furthermore, we shall only deal with two-dimensional p-adic (p > 2) representations, and knowing traces is enough to know their characteristic polynomials.

We shall work with subspaces of Spec $R^{ps}(tr \bar{\rho})$; for example, the subspace of pseudo-deformations of dimension 2 which are traces of representations, or indeed 'of type \mathcal{D} ' may be demanded; in that case, if a point $t: \operatorname{Spec} \mathcal{O}_t \to \operatorname{Spec} R^{\operatorname{ps}}(\operatorname{tr} \overline{\rho})$, defined over the integers \mathcal{O}_t of an extension E_t of E, corresponds to a two-dimensional representation V_t defined over \mathcal{O}_t , it is of type \mathcal{D} and the Colmez functor (see Theorem 2.1.1 in [3]) allows one to work on the $GL_2(\mathbf{Q}_p)$ -side, i.e., an \mathcal{O}_t -admissible lattice Π_t with a central character such that $\mathbf{V}(\Pi_t) \subset V_t$ and $\mathbf{V}(\Pi_t) \otimes \mathbf{Q}_p \simeq V_t$, and there is a map c-Ind^G_{KZ} $L_{k,\tau} \to \Pi_t$ of Grepresentations. With a view to applying Taylor-Wiles and Wiles' approach to modular lifting theorems, this may be thought of as a local manifestation of the existence of a modular lifting; in proving a 'local R = T' in which to count multiplicities, it is hence useful to have a local analogue of 'Hecke modules' and 'patching', and this is somehow what Kisin seems to construct: 'points' of $R^{ps}(tr \overline{\rho})$ are defined over any local Artinian rings with residue field \mathbf{F} , and, in order to align where they are defined, Kisin constructs an admissible \mathcal{O}_E -lattice $\Pi(t)$, the image of c-Ind^G_{KZ} $L_{k,\tau}$ by the aforementioned map, in Π_t . One can do this for a finite set U of deformations t of type \mathcal{D} , and let $\Pi(U)$ denote the corresponding admissible \mathcal{O} -lattice with G-action and $V(U) = \mathbf{V}(U)$. If U is a countable set of deformations of type \mathcal{D} , define $\Pi(U)$ to be the inverse limit of $\Pi(U_{\text{fin}})$ for finite subsets U_{fin} of U, and also V(U) to be the inverse limit of $\mathbf{V}(U_{\text{fin}})$.

Lemma 1 Let U be a countable set of pseudo-deformations of tr $\overline{\rho}$ of type \mathcal{D} . Then V(U) is a finite $R^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$ -module of dimension < 2. Let

$$R_U^{\rm ps}({\rm tr}\,\overline{\rho})$$

denote the image of $R^{ps}(\operatorname{tr} \overline{\rho})$ in $\operatorname{End}(V(U))$. Then $R_U^{ps}(\operatorname{tr} \overline{\rho})$ is a flat \mathcal{O} -algebra of relative dimension ≤ 1 .

Proof. This is Lemma 1.6.6. As explained in Lemma 1.6.3, V(U) is a $R_U^{\text{ps}}(\operatorname{tr} \overline{\rho})$ -module by the 'specialisation to U' of the universal pseudo-deformation over $R_U^{\text{ps}}(\operatorname{tr} \overline{\rho})$. \Box

For an integer $0 \leq r \leq p-1, \lambda \in \mathbf{F}$, and a character $\chi : \mathbf{Q}_p^{\times} \to \mathbf{F}^{\times}$, let

$$\pi(r,\lambda,\chi)$$

denote the Barthel-Livné representation of $GL_2(\mathbf{Q}_p)$ over **F** as defined in 1.2 [4].

Suppose that Π is an admissible \mathcal{O} -lattice (1.2.5), i.e., a representation of $GL_2(\mathbf{Q}_p)$ on an \mathcal{O} -module, which is *p*-adically complete and separated and which admits a central character $\mathbf{Q}_p^{\times} \to \mathcal{O}^{\times}$. For every n, let $\Pi_n = \Pi \otimes_{\mathbf{Z}} \mathbf{Z}/p^n$; in which case Π is the inverse limit of the Π_n , and every Π_n is of finite length and admissible (1.2.3) and therefore its Jordan-Hölder factor is either one-dimensional or an infinitedimensional subquotient of a Barthel-Livné representation. In 1.6.4, Kisin explains how to 'reverse' the construction: given a representation ρ (' Π_1 ') of $GL_2(\mathbf{Q}_p)$ over \mathbf{F} , and a finite collection P of Barthel-Livné representations, all with a central character ψ (fixed), let

 ρ_P

denote the inverse limit ('\Pi') of finite length quotients (' Π_n ') of ρ all of whose Jordan-Holder factors are isomorphic to subquotients of representations in P; one may think of it as the 'completion of ρ at P'. A useful thing about the construction $(\rho, P) \mapsto \rho_P$ is that, if ρ and P are both 'explicit', and in particular if ρ is compactly induced from an irreducible KZ-representation on a finite-dimensional **F**-vector space, one can make the admissible \mathcal{O} -lattice ρ_P explicit. This is the content of Lemma 1.6.5, and it is repeatedly used to great effect in proving Lemma 1.6.6 and Lemma 1.6.8 in which, with a view to understanding $R(U)/\pi$, the structure of the $R(U)/\pi$ -module $V(U)/\pi$ is studied. The underlying idea seems to be as follows: for brevity, suppose that U consists of exactly one pseudo-deformation $t = \text{tr } V_t$ of $\text{tr }\overline{\rho}$ of type \mathcal{D} ; it is hence $\Pi(t)/\pi$ that one needs to understand. Recall that $\Pi(t)$ is an admissible \mathcal{O} -lattice defined as the closure of the image of c- $\text{Ind}_{KZ}^G L_{k,\tau}$ in the admissible \mathcal{O}_t -lattice Π_t such that $\mathbf{V}(\Pi_t) = V_t$, and one may loosely think of $\Pi(t)$ as the 'completion' of c- $\text{Ind}_{KZ}^G \overline{L}_{k,\tau}$ in Π_t . But 'completion' with respect to what? It should be Jordan-Hölder factors of Π_t/π which are Barthel-Livné representations with a central character! It is in view of Lemma 1.6.5 then that one considers a KZ-module filtration of $\overline{L}_{k,\tau}$ so that, on each KZ-irreducible quotient, its compact induction has an explicit form of 'completion' and $\Pi(t)/\pi$ admits a more amenable description.

2.2 Goal

Our goal is to prove the inequality:

$$e(R^{\Box,\psi}(k,\tau,\overline{\rho})/\pi) \le \mu_{\operatorname{Aut}}(k,\tau,\overline{\rho}) \stackrel{\operatorname{def}}{=} \sum_{n \in \{0,1,\dots,p-1\}, m \in \{0,1,\dots,p-2\}} a_{n,m}\mu_{n,m}(\overline{\rho})$$

where $a_{n,m}$ is the multiplicity of $\sigma_{n,m} = \text{Sym}^n \text{det}^m \mathbf{F}^2$ in the semi-simplification of $\overline{L}_{k,\tau}$, and where $\mu_{n,m}(\overline{\rho}) \in \{0, 1, 2\}$ is an integer explicitly defined (except the n = p-2 semi-simple scaler case) according to $\overline{\rho}$ (see the section immediately above 1.2; it may also be useful to compare this to Buzzard-Diamond-Jarvis [1] as a precursor to Gee-Kisin [2]). In fact, Kisin's proof works verbatim for the inequality (see Proposition 1.7.13):

$$e(R_{\mathrm{cr}}^{\Box,\psi}(k,\tau,\overline{\rho})/\pi) \le \mu_{\mathrm{Aut,cr}}(k,\tau,\overline{\rho}) \stackrel{\mathrm{def}}{=} \sum_{n \in \{0,1,\dots,p-1\}, m \in \{0,1,\dots,p-2\}} a_{n,m,\mathrm{cr}}\mu_{n,m}(\overline{\rho}),$$

where $a_{n,m,cr}$ is the multiplicity of $\sigma_{n,m}$ in the semi-simplification of $\overline{L}_{k,\tau,cr}$. With that in mind, we shall only deal with the former.

2.3 Proof

Given a pseudo-deformation t of tr $\overline{\rho}$, let I_t denote the kernel of the corresponding map $R^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho}) \to \mathcal{O}_t$. Let I denote the intersection of all I_t where t is the the trace of a representation of type \mathcal{D} ; then there exists a countable set $U_{\mathcal{D}}^{-1}$ of pseudo-deformations of \overline{r} such that $I = \bigcap_{t \in U_{\mathcal{D}}} I_t$.

Definition. We say that $\overline{\rho}$ is

(**Irr**) if it is absolutely IRReducible;

 $(\mathbf{NT}_{\chi_1,\chi_2})$ if it is a Non-Trivial extension of a character $\chi_2: G \to \mathbf{F}^{\times}$ by a character $\chi_1: G \to \mathbf{F}^{\times}$ such that χ_1 and χ_2 are distinct and $\chi_1/\chi_2 \notin \{\omega_{\text{cyclo}}^{\pm 1}\};$

 $(\mathbf{T}_{\chi_1,\chi_2})$ if it is a direct sum (i.e. a 'Trivial' extension) of distinct characters χ_1 and χ_1 such that $\chi_1/\chi_2 \notin \{\omega^{\pm 1}\};$

 (\mathbf{S}^3) if it has Scalar Semi-Simplification.

We will show firstly that

$$e(R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi) \le \mu_{\mathrm{Aut}}(k,\tau,\overline{\rho})$$

case-by-case, and then compare $e(R^{\Box,\psi}(k,\tau,\overline{\rho})/\pi)$ and $e(R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi)$ to deduce the inequality. In the reducible case, one more or less has to prove inequalities over different components of Spec $R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$, and its geometry, in particular, understanding its irreducible components is crucial in Kisin's approach.

If $\overline{\rho}: G_{\mathbf{Q}_p} \to GL_2(E)$ is *indecomposable*, i.e., not reducible split, define

$$\mu_{\text{Aut,BDJ}}(k,\tau,\overline{\rho}) \stackrel{\text{def}}{=} \sum_{n \in \{0,1,\dots,p-1\}, m \in \{0,1,\dots,p-2\}} a_{n,m} \mu_{n,m,\text{BDJ}}(\overline{\rho})$$

by setting $\mu_{n,m,\text{BDJ}}(\overline{\rho}) = 0$ if $\mu_{n,m}(\overline{\rho}) = 0$ and $\mu_{n,m,\text{BDJ}}(\overline{\rho}) = 1$ otherwise; in the light of the Buzzard-Dimaond-Jarvis conjecture, $\mu_{n,m,\text{BDJ}}(\overline{\rho}) = 1$ precisely when BDJ [1] predicts Serre weights for such $\overline{\rho}$.

Lemma 2 In view of computing e_{Σ} , let $\Sigma = \{\overline{\rho}\}$ if $\overline{\rho}$ is (**Irr**), and let $\Sigma = \{\omega_{\text{cyclo}}^{n+1+m} \text{unr}(\lambda_1\lambda_2)\}$ if $\overline{\rho} \sim \begin{pmatrix} \omega_{\text{cyclo}}^{n+1} \text{unr}(\lambda_1) & * \\ 0 & \text{unr}(\lambda_1^{-1}) \end{pmatrix} \otimes \omega_{\text{cyclo}}^m \text{unr}(\lambda_2)$, where $0 \leq n, m \leq p-2$ are integers and where $\text{unr}(\lambda)$ is the unramified character of $G_{\mathbf{Q}_p}$ sending the geometric Frobenius to $\lambda \in \mathbf{F}^{\times}$. Assume, furthermore, that if $\overline{\rho}$ is reducible, n = 0, and $\lambda = \pm 1$, then * is a peu ramifié extension. Then

 $e_{\Sigma}(V(U_{\mathcal{D}})/\pi, R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi) \leq \mu_{\mathrm{Aut,BDJ}}(k, \tau, \overline{\rho})$

unless $\overline{\rho}$ is (S³) in which case

$$e_{\Sigma}(V(U_{\mathcal{D}})/\pi, R_{\mathcal{D}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi) \leq 2\mu_{\mathrm{Aut,BDJ}}(k, \tau, \overline{\rho}).$$

Sketch of proof. This is Lemma 1.6.8. Let $G = GL_2(\mathbf{Q}_p), K = GL_2(\mathbf{Z}_p)$ and Z the centre of G. Let P denote the set of representations $\pi(r, \lambda, \chi)$ such that $\mathbf{V}(\pi(r, \lambda, \chi))$ is a Jordan-Holder factor in $\overline{\rho}$. Since $\overline{L}_{k,\tau}$ is finite-dimensional over **F**, there exists a filtration of KZ-subspaces $\{0\} = L_0 \subset L_1 \subset \cdots \subset L_n = \overline{L}_{k,\tau}$ such that every quotient L_{i+1}/L_i is an irreducible KZ-module. As it is irreducible, we may and will suppose that $L_{i+1}/L_i = \text{Sym}^r \mathbf{F}^2 \otimes \chi \circ \det$ for some character $\chi : \mathbf{Q}_p^{\times} \to \mathbf{F}^{\times}$ such that $\chi|_{\mathbf{Z}_p^{\times}} = \det^s$. By some general commutative algebra results about e_{Σ} , it suffices to prove that, for Σ as defined above,

$$e_{\Sigma}(\text{c-Ind}_{KZ}^G L_{i+1}/L_i, R_i) = \mu_{r,s,\text{Aut,BDJ}}(\overline{\rho})$$

unless $\overline{\rho}$ is (**S**³) in which case

$$e_{\Sigma}(\text{c-Ind}_{KZ}^G L_{i+1}/L_i, R_i) = 2\mu_{r,s,\text{Aut,BDJ}}(\overline{\rho}),$$

where R_i denote the image of $R^{\text{ps}}(\overline{\rho})$ in $\text{End}(\mathbf{V}((c-\text{Ind}_{KZ}^G L_{i+1}/L_i)_P))$.

¹It is denoted by U_0 in [4]

Firstly, observe that, with r and χ fixed as above, $\mu_{r,s,\text{Aut,BDJ}}(\overline{\rho}) \neq 0$ if and only if there exists $\lambda \in \mathbf{F}$ such that $\mathbf{V}(\pi(r,\lambda,\chi))$ is the element in Σ ; this is not true in the peu-ramifié case without the condition in the assertion.

If $\mu_{r,s,\text{Aut,BDJ}}(\overline{\rho}) = 0$, it follows from Lemma 1.6.5 that $\mathbf{V}((\text{c-Ind}_{KZ}^G L_{i+1}/L_i)_P)$ has no sub-quotients isomorphic to Σ ; hence $e_{\Sigma} = 0$.

If $\mu_{r,s,\text{Aut,BDJ}}(\overline{\rho}) \neq 0$, it follows from Lemma 1.6.5 that

$$e_{\Sigma}(\mathbf{V}((c\operatorname{Ind}_{KZ}^{G}L_{i+1}/L_{i})_{P}), R_{i}) = e_{\Sigma}(\mathbf{V}(\Pi(r, \lambda, \chi)), R_{i}).$$

The R^{ps} -module structure on $\mathbf{V}(\Pi(r, \lambda, \chi))$ is explicit and computable; and the RHS is 1 if $\overline{\rho}$ is not (\mathbf{S}^3) while it is 2 if it is (\mathbf{S}^3). \Box

Definition. An irreducible component Z of Spec $R_{U_{\mathcal{D}}}^{ps}(\operatorname{tr} \overline{\rho})[1/p]$ is said to be of *irreducible type* if the generic point of Z corresponds to an absolutely irreducible representation. If it is not, Z is said to be of *reducible type*.

In the reducible case, one can specify more. Suppose that the semi-simplification of $\overline{\rho}$ is the direct sum of characters χ_1 and χ_2 . Let t be a closed point of an irreducible component Z of reducible type. The corresponding representation V_t is reducible (since the HT weights are distinct), and its semi-simplification is the direct sum of characters χ_1 and χ_2 . Which, we may and will assume, reduce respectively to χ_1 and χ_2 . We say that t is of type χ_1 (resp. χ_2) if χ_1 (resp. χ_2) is the character of a one-dimensional subspace (as opposed to its one-dimensional quotient) of V_t . The following lemma shows that all points of Z of reducible type is either of type χ_1 and χ_2 and we say the component Z is of type χ_1 or χ_2 accordingly.

Lemma 3 One knows exactly when and how there can be an irreducible component of Spec $R_{U_{\mathcal{D}}}^{\text{ps}}(\operatorname{tr} \overline{\rho})[1/p]$ of reducible type.

Proof. This is Lemma 1.6.13 of [4]. \Box

Proposition 4 If $\overline{\rho}$ is (Irr), then

$$e(R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi) \leq \mu_{\mathrm{Aut}}(k,\tau,\overline{\rho}).$$

If $\overline{\rho}$ is $(\mathbf{NT}_{\chi_1,\chi_2})$, choose $U_{\mathcal{D},\mathrm{irr},\chi_1}$ so that $\operatorname{Spec} R^{\mathrm{ps}}_{U_{\mathcal{D},\mathrm{irr},\chi_1}}(\operatorname{tr} \overline{\rho}) \subset \operatorname{Spec} R^{\mathrm{ps}}_{U_{\mathcal{D}}}(\operatorname{tr} \overline{\rho})$ is the Zariski closure of the union of the components of irreducible type and reducible χ_1 type. Then

$$e(R_{U_{\mathcal{D},\mathrm{irr},\chi_1}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi) \le \mu_{\mathrm{Aut}}(k,\tau,\overline{\rho}).$$

If $\overline{\rho}$ is (S³), let $U_{\mathcal{D},\mathrm{irr}} \subset U_{\mathcal{D}}$ denote a dense subset of points on the components of irreducible type in Spec $R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$ and C_{red} denote the set of components of reducible type. Then

$$e(R_{U_{\mathcal{D},\mathrm{irr}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{
ho})/\pi) + |C_{\mathrm{red}}| \le \mu_{\mathrm{Aut,BDJ}}(k,\tau,\overline{
ho}).$$

Sketch of Proof.

(**Irr**): This is Proposition 1.6.10. By definition, $R_{U_{\mathcal{D}}}^{\text{ps}}(\operatorname{tr}\overline{\rho})$ is a quotient of $R^{\text{ps}}(\operatorname{tr}\overline{\rho}) \simeq R(\overline{\rho})$ (see 1.4.4 (1)); hence 'by specialisation of the universal deformation $R(\overline{\rho})$ -module', there exists a rank 2 free $R_{U_{\mathcal{D}}}^{\text{ps}}(\operatorname{tr}\overline{\rho})$ -module $M(U_{\mathcal{D}})$ on which $G_{\mathbf{Q}_{p}}$ acts.

For g in $G_{\mathbf{Q}_{p}}$, let

$$P_g(X) = X^2 - T(g)X + (T(g)^2 - T(g^2))/2$$

where $T: G_{\mathbf{Q}_p} \to R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$ is the universal pseudo-deformation of $\mathrm{tr}\,\overline{\rho}$; it is the characteristic polynomial of $M(U_{\mathcal{D}})$, and $P_g(g) = 0$ on $V(U_{\mathcal{D}})$ according to the action of $R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$ on $V(U_{\mathcal{D}})$ (see Lemma 1.6.3).

It then follows from an algebra lemma (Lemma 1.6.11) that there is an injection:

$$M(U_{\mathcal{D}}) \otimes_{R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho}),\eta} \operatorname{Frac} R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho}) \longrightarrow V(U_{\mathcal{D}}) \otimes_{R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho}),\eta} \operatorname{Frac} R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$$

at any generic point η of Spec $R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\operatorname{tr} \overline{\rho})$. By 'clearing the denominators', one can then establish that there is an injection homomorphism of $R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\operatorname{tr} \overline{\rho})$ -modules:

(1)
$$M(U_{\mathcal{D}}) \longrightarrow V(U_{\mathcal{D}}).$$

If we let $\Sigma = \{\overline{\rho}\}$, unraveling the definition,

(2)
$$e(R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi) = e_{\Sigma}(M(U_{\mathcal{D}})/\pi, R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})).$$

Combining,

$$\begin{array}{lll} e(R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi) &=& e_{\Sigma}(M(U_{\mathcal{D}})/\pi, R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})) \ (\mathrm{by}\ (2)) \\ &\leq& e_{\Sigma}(V(U_{\mathcal{D}})/\pi, R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})) \ (\mathrm{by}\ (1) \ \mathrm{and}\ \mathrm{Corollary}\ 1.3.4) \\ &\leq& \mu_{\mathrm{Aut},\mathrm{BDJ}}(k,\tau,\overline{\rho}) \ (\mathrm{by}\ 1.6.8, \ \mathrm{or}\ \mathrm{Lemma}\ 2 \ \mathrm{above}) \\ &=& \mu_{\mathrm{Aut}}(k,\tau,\overline{\rho}). \end{array}$$

 $(\mathbf{NT}_{\chi_1,\chi_2})$: This is Proposition 1.6.15. For brevity, let U denote $U_{\mathcal{D},\mathrm{irr},\chi_1}$. Let I_{irr} (resp. I_{χ_1}) denote the ideal of $R_U^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$ corresponding to the component of irreducible type (resp. of reducible χ_1 type). Let $V(U)_{\mathrm{irr}} = V(U)/I_{\mathrm{irr}}V(U)$ and $V(U)_{\chi_1} = V(U)/I_{\chi_1}V(U)$.

Let $V(U)_{irr} = V(U)/I_{irr}V(U)$ and $V(U)_{\chi_1} = V(U)/I_{\chi_1}V(U)$. As χ_1 and χ_2 are distinct and $\chi_1/\chi_2 \notin \{\omega^{\pm 1}\}$, Ext¹(χ_2, χ_1) is one-dimensional and there exists a free rank 2 $R^{ps}(tr \overline{\rho})$ -module M(U) (see Corollary 1.4.7) on which $G_{\mathbf{Q}_p}$ acts; furthermore, $M(U)/I_{\chi_1}M(U)$ has a $R^{ps}(tr \overline{\rho})$ -line L_{χ_1} on which $G_{\mathbf{Q}_p}$ acts by a character lifting χ_1 .

Firstly observe that

(1)
$$e_{\chi_1}(R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/(I_{\mathrm{irr}},\pi), R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/\pi) \leq e_{\chi_1}(V(U)_{\mathrm{irr}}/\pi, R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/\pi);$$

this follows as in the case (Irr) above. Similarly,

$$(2) \ e_{\{\chi_1\}}(R_U^{\rm ps}(\operatorname{tr}\overline{\rho})/(I_{\chi_1},\pi), R_U^{\rm ps}(\operatorname{tr}\overline{\rho})/\pi) = e_{\{\chi_1\}}(L_{\chi_1}/\pi, R_U^{\rm ps}(\operatorname{tr}\overline{\rho})/\pi) \le e_{\{\chi_1\}}(V(U)_{\chi_1}/\pi, R_U^{\rm ps}(\operatorname{tr}\overline{\rho})/\pi)$$

Finally observe that (3) $V(U) \longrightarrow V(U)_{irr} \oplus V(U)_{\chi_1}$ is an isomorphism at the generic points of Spec $R_U^{ps}(\operatorname{tr} \overline{\rho})$. Then

$$\begin{aligned} e(R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/\pi) &= e(R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/(I_{\mathrm{irr}},\pi), R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/\pi) + e(R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/(I_{\chi_1},\pi), R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/\pi) \\ &\leq e_{\{\chi_1\}}(V(U)_{\mathrm{irr}}/\pi, R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/\pi) + e_{\{\chi_1\}}(V(U)_{\chi_1}/\pi, R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/\pi) \text{ (by (1) and (2))} \\ &= e_{\{\chi_1\}}(V(U)/\pi, R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/\pi) \text{ (by (3) and } 1.3.4 (2)) \\ &\leq \mu_{\mathrm{Aut},\mathrm{BDJ}}(k,\tau,\overline{\rho}) \text{ (by 1.6.8, i.e., Lemma 2 above)} \\ &= \mu_{\mathrm{Aut}}(k,\tau,\overline{\rho}). \end{aligned}$$

 (\mathbf{S}^3) : This is Proposition 1.6.18.

Firstly observe that, for Σ as defined in 1.6.8, or Lemma 2 above,

(1)
$$e(V(U_{\mathcal{D}})/\pi, R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi) = e_{\Sigma}(V(U_{\mathcal{D}})/\pi, R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi)) \leq 2\mu_{\mathrm{Aut,BDJ}}(k, \tau, \overline{\rho}).$$

Secondly,

(2)
$$e(R_{U_{\mathcal{D},\mathrm{irr}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi) \leq e(V(U_{\mathcal{D},\mathrm{irr}})/\pi, R_{U_{\mathcal{D},\mathrm{irr}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi)/2 \\ = e(V(U_{\mathcal{D},\mathrm{irr}})/\pi, R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi)/2$$

For every $Z \in C_{\text{red}}$, let $U_{\mathcal{D},Z} \subset U_{\mathcal{D}}$ denote a Zariski dense set of points of Z. Then

(3)
$$1 \le e(V(U_{\mathcal{D},Z})/\pi, R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi)/2.$$

Combining,

$$\begin{aligned} e(R_{U_{\mathcal{D},\mathrm{irr}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi) + |C_{\mathrm{red}}| &\leq e(V(U_{\mathcal{D},\mathrm{irr}})/\pi, R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi)/2 + \sum_{Z \in C_{\mathrm{red}}} 1 \text{ (by (2))} \\ &\leq e(V(U_{\mathcal{D},\mathrm{irr}})/\pi, R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi)/2 + \sum_{Z \in C_{\mathrm{red}}} e(V(U_{\mathcal{D},Z})/\pi, R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi)/2 \text{ (by (3))} \\ &= e(V(U_{\mathcal{D}})/\pi, R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi)/2 \\ &\leq \mu_{\mathrm{Aut,BDJ}}(k, \tau, \overline{\rho})(\mathrm{by (1)}). \end{aligned}$$

The following lemma is the first step towards comparing $e(R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})/\pi)$ and $e(R^{\Box,\psi}(k,\tau,\overline{\rho})/\pi)$.

Lemma 5 The universal property of $R^{ps}(tr \overline{\rho})$ defines a map

$$R^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho}) \longrightarrow R^{\bigsqcup,\psi}(k,\tau,\overline{\rho})$$

and it factors through $R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$; if $\mathrm{End}(\overline{\rho}) \subseteq \mathbf{F}$, then

$$R^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho}) \longrightarrow R^{\psi}(k,\tau,\overline{\rho})$$

factors through $R_{U_{\mathcal{D}}}^{\psi}(k,\tau,\overline{\rho})$. If, in particular, $\overline{\rho}$ is $(\mathbf{NT}_{\chi_1,\chi_2})$, then it factors through $R_{U_{\mathcal{D},\mathrm{irr},\chi_1}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$ (as defined in Proposition 4 above).

Proof. This is Lemma 1.7.1. It is clear by definition. \Box

Corollary 6 If $\overline{\rho}$ is either (Irr) or (NT_{χ_1,χ_2}), then

$$e(R^{\psi}(k,\tau,\overline{\rho})/\pi) \le \mu_{\mathrm{Aut}}(k,\tau,\overline{\rho}).$$

Proof. Let $U = U_{\mathcal{D}}$ if $\overline{\rho}$ is (**Irr**) and let $U = U_{\mathcal{D}, \operatorname{irr}, \chi_1}$ if $\overline{\rho}$ is (**NT**_{χ_1, χ_2}). Then

$$e(R^{\psi}(k,\tau,\overline{\rho})/\pi) \le e(R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/\pi) \le \mu_{\mathrm{Aut}}(k,\tau,\overline{\rho}),$$

where the first inequality follows from the preceding lemma while the second inequality follows from 1.6.10 if $\overline{\rho}$ is (**Irr**) and 1.6.15 if $\overline{\rho}$ is (**NT**_{χ_1,χ_2}). \Box

This corollary leaves us the two more cases $(\mathbf{T}_{\chi_1,\chi_2})$ and (\mathbf{S}^3) . In order to understand these cases, one has to understand more about $R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$. Suppose that $\overline{\rho}$ is either $(\mathbf{T}_{\chi_1,\chi_2})$ or (\mathbf{S}^3) ; in particular, $\overline{\rho}$ is reducible.

From (1.5.11), there is a map

$$\theta: R^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho}) \to \mathbf{F}[[S]]$$

corresponding to the deformation $\mathbf{V}(\Pi(r,\lambda,\chi))$ over $\mathbf{F}[[S]]$ (where $S = T - \lambda$) of a Jordan-Holder factor $\mathbf{V}(\pi(r,\lambda,\chi))$ of $\overline{\rho}$; furthermore, since $\overline{\rho}$ is reducible, θ depends only on the semi-simplification of $\overline{\rho}$ and not on (r,λ,χ) .

Definition. Let $J = \ker \theta$.

Definition. Let $R^{\text{ord}} = R^{\Box,\psi}(\overline{\rho})/J$ where by 'J' we mean the image of J by $R^{\text{ps}}(\operatorname{tr} \overline{\rho}) \to R^{\Box,\psi}(\overline{\rho})$.

Lemma 7 If $\overline{\rho}$ is $(\mathbf{T}_{\chi_1,\chi_2})$, then Spec R^{ord} has two components each of which is formally smooth over \mathbf{F} and dominates $R_{U_{\mathcal{D}}}^{\text{ps}}(\operatorname{tr} \overline{\rho})/J$.

If, on the other hand, $\overline{\rho}$ is (\mathbf{S}^3) and $\overline{\rho} \sim \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \otimes \chi$ where $\chi : G_{\mathbf{Q}_p} \to \mathbf{F}^{\times}$ satisfies $\chi^2 = \psi \chi_{\text{cycl}}$, then Spec R^{ord} is irreducible, generically reduced and dominates $R_{U_{\mathcal{D}}}^{\text{ps}}(\operatorname{tr} \overline{\rho})/J$. If, furthermore, * = 0, then $(R^{\text{ord}})^{\text{red}}$ is formally smooth over \mathbf{F} .

Proof. This is Lemma 1.7.4 if $\overline{\rho}$ is $(\mathbf{T}_{\chi_1,\chi_2})$, while it is Lemma 1.7.5 if $\overline{\rho}$ is (\mathbf{S}^3) . We leave it to the reader to check their proofs. \Box

Definition. Let $U \subset U_{\mathcal{D}}$ be a set of closed points of Spec $R_{U_{\mathcal{D}}}^{\text{ps}}(\operatorname{tr} \overline{\rho})$ whose closure is a non-empty collection of irreducible components. Define

to be the image of $R^{\Box,\psi}(k,\tau,\overline{\rho})$ in $R^{\Box,\psi}(k,\tau,\overline{\rho}) \otimes_{R_{U_{\mathcal{T}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})} R_{U}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})[1/p]).$

A point t of Spec R_U defined over a finite extension E_t of E corresponds to a two-dimensional representation of $G_{\mathbf{Q}_p}$ over E_t of type \mathcal{D} whose trace reduces to $\operatorname{tr} \overline{\rho}$, and it lies on an irreducible component in U.

 R_U

Lemma 8 If $\overline{\rho}$ is $(\mathbf{T}_{\chi_1,\chi_2})$ or (\mathbf{S}^3) , then

$$e(R_U/\pi) \le e(R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/\pi)e(R^{\mathrm{ord}})$$

If $\overline{\rho}$ is $(\mathbf{T}_{\chi_1,\chi_2})$ and U consists of type χ_1 , then

$$e(R_U/\pi) \le e(R_U^{\mathrm{ps}}(\operatorname{tr}\overline{\rho})/\pi)$$

Proof. This is Lemma 1.7.7. \Box

Proposition 9 If $\overline{\rho}$ is $(\mathbf{T}_{\chi_1,\chi_2})$, then

$$e(R^{\sqcup,\psi}(k,\tau,\overline{\rho})/\pi) \le \mu_{\mathrm{Aut}}(k,\tau,\overline{\rho})$$

If
$$\overline{\rho}$$
 is (\mathbf{S}^3) and $\overline{\rho} \sim \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \otimes \chi$, then
$$e(R^{\Box,\psi}(k,\tau,\overline{\rho})/\pi) \leq e(R^{\mathrm{ord}})\mu_{\mathrm{Aut,BDJ}}(k,\tau,\overline{\rho}) = \mu_{\mathrm{Aut}}(k,\tau,\overline{\rho})$$

Sketch of proof.

 $(\mathbf{T}_{\chi_1,\chi_2})$: This is Proposition 1.7.8. Let $U_{\mathcal{D},\mathrm{irr}}$ be a subset of $U_{\mathcal{D}}$ such that $\operatorname{Spec} R_{U_{\mathcal{D}},\mathrm{irr}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$ is the union of components of $\operatorname{Spec} R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$ of irreducible type; and let $U_{\mathcal{D},\mathrm{red},\chi_1}(\mathrm{resp.}\ U_{\mathcal{D},\mathrm{red},\chi_2})$ be a subset of $U_{\mathcal{D}}$ such that $\operatorname{Spec} R_{U_{\mathcal{D}},\mathrm{red},\chi_1}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$ (resp. $\operatorname{Spec} R_{U_{\mathcal{D}},\mathrm{red},\chi_2}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$) is the union of components of $\operatorname{Spec} R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})$ of reducible χ_1 (resp. χ_2) type. Note that $U_{\mathcal{D},\mathrm{red},\chi_1}(\mathrm{tr}\,\overline{\rho})$ and $U_{\mathcal{D},\mathrm{red},\chi_2}(\mathrm{tr}\,\overline{\rho})$ are different from those 'with *irr* in place of *red*' as appeared in Proposition 4 above, i.e., $U_{\mathcal{D},\mathrm{irr},\chi_1}(\mathrm{tr}\,\overline{\rho})$ and $U_{\mathcal{D},\mathrm{irr},\chi_1}(\mathrm{tr}\,\overline{\rho})$ respectively.

By 1.7.4 and 1.7.7,

(1)
$$e(R_{U_{\mathcal{D},\mathrm{irr}}}/\pi) \leq e(R^{\mathrm{ord}})e(R^{\mathrm{ps}}_{U_{\mathcal{D},\mathrm{irr}}}/\pi) \text{ (by 1.7.7)}$$
$$= 2e(R^{\mathrm{ps}}_{U_{\mathcal{D},\mathrm{irr}}}/\pi) \text{ (by 1.7.4)}.$$

Let $\overline{\rho}_{\chi_1,\chi_2}$ (resp. $\overline{\rho}_{\chi_2,\chi_1}$) denote a non-trivial extension of χ_2 by χ_1 (resp. χ_1 by χ_2). Then it follows from 1.7.7. that

(2)
$$\begin{array}{rcl} e(R_{U_{\mathcal{D},\mathrm{red},\chi_1}}/\pi) &\leq e(R_{U_{\mathcal{D},\mathrm{red},\chi_1}}^{\mathrm{ps}}/\pi);\\ e(R_{U_{\mathcal{D},\mathrm{red},\chi_2}}/\pi) &\leq e(R_{U_{\mathcal{D},\mathrm{red},\chi_2}}^{\mathrm{ps}}/\pi). \end{array}$$

Combining,

$$\begin{aligned} e(R^{\Box,\psi}(k,\tau,\overline{\rho})/\pi) &= e(R_{U_{\mathcal{D},\mathrm{irr}}}/\pi) + e(R_{U_{\mathcal{D},\mathrm{red},\chi_{1}}}/\pi) + e(R_{U_{\mathcal{D},\mathrm{red},\chi_{2}}}/\pi) \\ &\leq 2e(R_{U_{\mathcal{D},\mathrm{irr}}}^{\mathrm{ps}}/\pi) + e(R_{U_{\mathcal{D},\mathrm{red},\chi_{1}}}^{\mathrm{ps}}/\pi) + e(R_{U_{\mathcal{D},\mathrm{red},\chi_{2}}}^{\mathrm{ps}}/\pi) \text{ (by (1) and (2))} \\ &= \left(e(R_{U_{\mathcal{D},\mathrm{irr}}}^{\mathrm{ps}}/\pi) + e(R_{U_{\mathcal{D},\mathrm{red},\chi_{1}}}^{\mathrm{ps}}/\pi)\right) + \left(e(R_{U_{\mathcal{D},\mathrm{irr}}}^{\mathrm{ps}}/\pi) + e(R_{U_{\mathcal{D},\mathrm{red},\chi_{2}}}^{\mathrm{ps}}/\pi)\right) \\ &= e(R_{U_{\mathcal{D},\mathrm{irr},\chi_{1}}}^{\mathrm{ps}}/\pi) + e(R_{U_{\mathcal{D},\mathrm{irr},\chi_{2}}}^{\mathrm{ps}}/\pi) \\ &\leq \mu_{\mathrm{Aut}}(k,\tau,\overline{\rho}_{\chi_{1},\chi_{2}}) + \mu_{\mathrm{Aut}}(k,\tau,\overline{\rho}_{\chi_{2},\chi_{1}}) \\ &= \mu_{\mathrm{Aut}}(k,\tau,\overline{\rho}). \end{aligned}$$

 (\mathbf{S}^3) : This is Proposition 1.7.10. Firstly observe that

(1)
$$\mu_{\text{Aut}}(k,\tau,\overline{\rho}) = \mu_{p-2,s}(\overline{\rho})\mu_{\text{Aut,BDJ}}(k,\tau,\overline{\rho})$$

where $\chi|_{I_{\mathbf{Q}_p}} = \omega^s_{\text{cyclo}}$, and $\mu_{p-2,s}(\overline{\rho}) = e(R^{\text{ord}})$.

We may and will suppose henceforth that the twist χ is trivial. For a component Z of Spec $R_{U_{\mathcal{D}}}^{\mathrm{ps}}(\mathrm{tr}\,\overline{\rho})[1/p]$ of reducible type, let $U_{\mathcal{D},Z}$ denote a Zariski dense set of points in Z. Then

(2)
$$e(R_{U_{\mathcal{D},Z}}/\pi) = e(R^{\text{ord}}).$$

This is not exactly straightforward (see Kisin's proof of Proposition 1.7.10). Combining,

$$e(R^{\sqcup,\psi}(k,\tau,\overline{\rho})/\pi) = e(R_{U_{\mathcal{D},\mathrm{irr}}}) + \sum_{Z \in C_{\mathrm{red}}} e(R_{U_{\mathcal{D},Z}}/\pi)$$

$$\leq \left(e(R_{U_{\mathcal{D},\mathrm{irr}}}^{\mathrm{ps}}) + \sum_{Z \in C_{\mathrm{red}}} 1\right) e(R^{\mathrm{ord}}) \text{ (by 1.7.7, } U = U_{\mathcal{D},\mathrm{irr}}, U_{\mathcal{D},Z} \text{ and (2))}$$

$$\leq \mu_{\mathrm{Aut},\mathrm{BDJ}}(k,\tau,\overline{\rho})e(R^{\mathrm{ord}}) \text{ (by 1.6.18)}$$

$$= \mu_{\mathrm{Aut}}(k,\tau,\overline{\rho}) \text{ (by (1))},$$

where $U_{\mathcal{D},\text{irr}}$ denotes a Zariski dense set of points on the components of irreducible type and C_{red} denotes the set of components of reducible type. \Box

References

- K.Buzzard, F.Diamond, & F.Jarvis, On Serre's conjecture for mod l Galois representations over totally real fields, Duke Math Journal, 55 (2010), 105-161.
- [2] T.Gee & M.Kisin, The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, preprint.
- [3] M.Kisin, Deformations of $G_{\mathbf{Q}_p}$ and $GL_2(\mathbf{Q}_p)$ representations, Astérisque 330 (2010), 529-542.
- [4] M.Kisin, The Fomtaine-Mazur conjecture for GL₂, J. Amer. Math. Soc., 22 (2009), 641-690.