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1 Introduction

These are lecture notes based on the one and half hour long lecture I gave at the workshop (17/12/2012-
18/12/2012) about the Breuil-Mezard conjecture in Luxembourg.

The organisers of the workshop had asked me to explain Kisin’s paper [4], in particular, 1.6.7 through
to 1.7.16 of the paper, and the lecture inevitably followed the paper faithfully, given that my task was
to explain Kisin’s proofs.

Let p be a rational odd prime and let E be a finite extension of Qp. The p-adic local Langlands
correspondence, as formulated by Breuil, ‘sends’ a two-dimensional continuous E-linear representation
V of Gal(Qp/Qp) to an admissible, unitary Banach space representation B(V ) of GL2(Qp) defined over
E, which is in compatible with the classical local Langlands correspondence and with the mod p local
Langlands correspondnce for these groups.

Colemz’s construction of the p-adic local Langlands correspondence is via Fontaine’s theory of (ϕ,Γ)-
modules. In particular, he proves an equivalence of categories by which one associates to V as above
a (ϕ,Γ)-module D(V ), and, when V is irreducible, construct B(V ) from D(V ); he also makes the
observation that one can perform V 7→ D(V ) 7→ B(V ) ‘integrally’, i.e., given a finite type OE module
T ⊂ V , one can build D(T ) ⊂ D(V ) and then B(T ) ⊂ B(V ) compatibly; and furthermore that one can
conversely recover D(T ) from B(T ). The last observation, dubbed V, seems to be at the heart of Kisin’s
proof of the Breuil-Mézard and the Fontaine-Mazur conjectures, not least because the integrality allows
him to ‘count’ representations of Gal(Qp/Qp) and representations of GL2(Qp) by deformations (see [3]).

2 Kisin’s paper

We shall do our best following Kisin’s notation (with minor alterations); local class field theory is
normalised so that uniformisers correspond to geometric Frobenii. Let

GQp
: the decomposition group Gal(Qp/Qp);

IQp : the inertia subgroup of GQp ;
E: a ‘sufficiently large’ finite extension of Qp with ring O of integers, a uniformiser π, and residue

field F;
χcyclo: the p-adic cyclotomic character;
ωcyclo: the mod p cyclotomic character;
ρ: a two-dimensional representation over F of GQp

;
k: an integer ≥ 2;
τ : a representation IQp → GL2(E) with open kernel of Galois type (i.e. it extends to a representation

of the Weil group of Qp);
σ(τ): the unique finite-dimensional irreducible representation of GL2(Zp) over Qp associated by

Hanniart’s inertial local Langlands σ in the appendix to the Breuil-Mézard paper ;
σcr(τ): σ(τ) but additionally characterised by N = 0;
σ(k, τ) = σ(τ)⊗E Symk−2E2;
σcr(k, τ) = σcr(τ)⊗E Symk−2E2;
Lk,τ : a GL2(Zp)-stable O-lattice in σ(k, τ);
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Lk,τ,cr: a GL2(Zp)-stable O-lattice in σcr(k, τ);
Lk,τ : Lk,τ/π
Lk,τ,cr:Lk,τ,cr/π
ψ: a character Q×p → O× such that its restriction to Z×p equals χk−2

cyclo(det τ)|Z×p , which is the central

character of σ(k, τ);
Rps(tr ρ): the universal pseudo-deformation ring of tr ρ, thought of as a pseudo-representation of

dimension two;
R(ρ): the universal deformation W (F)-algebra of ρ;
R�(ρ): the universal framed deformation W (F)-algebra of ρ;
R�,ψ(ρ): the universal framed deformation W (F)-algebra of ρ with determinant ψχcyclo.

With k, τ, ψ as above fixed (and we will), we say that a two-dimensional representation V with a
continuous action of GQp

is of type
D = (k, τ, ψ)

if V is potentially semi-stable of type τ with Hodge-Tate weights 0, k − 1 and determinant ψχcyclo. By
a two-dimensional pseudo-representation GQp of type D, we shall mean that it is the trace of a two-
dimensional representation V of type D.

Let R�,ψ(k, τ, ρ), Rψ(k, τ, ρ) be quotients of R�(ρ) ⊗W (F) O, R(ρ) ⊗W (F) O respectively as defined
in Proposition 1.1.1.

Suppose A is a noetherian local ring with maximal ideal m. For a finite A-module M , let e(M,A) (or
e(A) if M = A) denote the Hilbert-Samuel multiplicity in M of irreducible representations over A/m.
Suppose furthermore that M comes equipped with an action of a group G. If Σ is a set of irreducible
representations of G on finite-dimensional A/m-vector spaces. Let eΣ(M,A) denote the ‘Hilbert-Samuel
multiplicity’ in M of representations isomorphic to representations in Σ (see section 1.3 of [4]).

2.1 So far

Let Rps(tr ρ) be the universal pseudo-deformation ring of tr ρ; as p is odd, the ring pro-represents the
functor of continuous pseudo-deformations of tr ρ (see Lemma 1.4.2). One of the reasons Kisin works
with ‘pseudo-deformations’ of tr ρ rather than ‘deformations’ of ρ seems to be that one has to deal with
cases where ρ is reducible split, and pseudo-deformation theory seems to work better. Furthermore, we
shall only deal with two-dimensional p-adic (p > 2) representations, and knowing traces is enough to
know their characteristic polynomials.

We shall work with subspaces of SpecRps(tr ρ); for example, the subspace of pseudo-deformations of
dimension 2 which are traces of representations, or indeed ‘of type D’ may be demanded; in that case, if a
point t : SpecOt → SpecRps(tr ρ), defined over the integers Ot of an extension Et of E, corresponds to a
two-dimensional representation Vt defined over Ot, it is of type D and the Colmez functor (see Theorem
2.1.1 in [3]) allows one to work on the GL2(Qp)-side, i.e., an Ot-admissible lattice Πt with a central

character such that V(Πt) ⊂ Vt and V(Πt) ⊗ Qp ' Vt, and there is a map c-IndGKZLk,τ → Πt of G-
representations. With a view to applying Taylor-Wiles and Wiles’ approach to modular lifting theorems,
this may be thought of as a local manifestation of the existence of a modular lifting; in proving a ‘local
R = T ’ in which to count multiplicities, it is hence useful to have a local analogue of ‘Hecke modules’ and
‘patching’, and this is somehow what Kisin seems to construct: ‘points’ of Rps(tr ρ) are defined over any
local Artinian rings with residue field F, and, in order to align where they are defined, Kisin constructs
an admissible OE-lattice Π(t), the image of c-IndGKZLk,τ by the aforementioned map, in Πt. One can
do this for a finite set U of deformations t of type D, and let Π(U) denote the corresponding admissible
O-lattice with G-action and V (U) = V(U). If U is a countable set of deformations of type D, define
Π(U) to be the inverse limit of Π(Ufin) for finite subsets Ufin of U , and also V (U) to be the inverse limit
of V(Ufin).

Lemma 1 Let U be a countable set of pseudo-deformations of tr ρ of type D. Then V (U) is a finite
Rps(tr ρ)-module of dimension ≤ 2. Let

Rps
U (tr ρ)
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denote the image of Rps(tr ρ) in End(V (U)). Then Rps
U (tr ρ) is a flat O-algebra of relative dimension

≤ 1.

Proof. This is Lemma 1.6.6. As explained in Lemma 1.6.3, V (U) is a Rps
U (tr ρ)-module by the ‘spe-

cialisation to U ’ of the universal pseudo-deformation over Rps
U (tr ρ). �

For an integer 0 ≤ r ≤ p− 1, λ ∈ F, and a character χ : Q×p → F×, let

π(r, λ, χ)

denote the Barthel-Livné representation of GL2(Qp) over F as defined in 1.2 [4].
Suppose that Π is an admissible O-lattice (1.2.5), i.e., a representation of GL2(Qp) on an O-module,

which is p-adically complete and separated and which admits a central character Q×p → O×. For every
n, let Πn = Π ⊗Z Z/pn; in which case Π is the inverse limit of the Πn, and every Πn is of finite length
and admissible (1.2.3) and therefore its Jordan-Hölder factor is either one-dimensional or an infinite-
dimensional subquotient of a Barthel-Livné representation. In 1.6.4, Kisin explains how to ‘reverse’ the
construction: given a representation ρ (‘Π1’) ofGL2(Qp) over F, and a finite collection P of Barthel-Livné
representations, all with a central character ψ (fixed), let

ρP

denote the inverse limit (‘Π’) of finite length quotients (‘Πn’) of ρ all of whose Jordan-Holder factors are
isomorphic to subquotients of representations in P ; one may think of it as the ‘completion of ρ at P ’. A
useful thing about the construction (ρ, P ) 7→ ρP is that, if ρ and P are both ‘explicit’, and in particular if
ρ is compactly induced from an irreducible KZ-representation on a finite-dimensional F-vector space, one
can make the admissible O-lattice ρP explicit. This is the content of Lemma 1.6.5, and it is repeatedly
used to great effect in proving Lemma 1.6.6 and Lemma 1.6.8 in which, with a view to understanding
R(U)/π, the structure of the R(U)/π-module V (U)/π is studied. The underlying idea seems to be as
follows: for brevity, suppose that U consists of exactly one pseudo-deformation t = trVt of tr ρ of type
D; it is hence Π(t)/π that one needs to understand. Recall that Π(t) is an admissible O-lattice defined
as the closure of the image of c-IndGKZ Lk,τ in the admissible Ot-lattice Πt such that V(Πt) = Vt, and

one may loosely think of Π(t) as the ‘completion’ of c-IndGKZ Lk,τ in Πt. But ‘completion’ with respect
to what? It should be Jordan-Hölder factors of Πt/π which are Barthel-Livné representations with a
central character! It is in view of Lemma 1.6.5 then that one considers a KZ-module filtration of Lk,τ
so that, on each KZ-irreducible quotient, its compact induction has an explicit form of ‘completion’ and
Π(t)/π admits a more amenable description.

2.2 Goal

Our goal is to prove the inequality:

e(R�,ψ(k, τ, ρ)/π) ≤ µAut(k, τ, ρ)
def
=

∑
n∈{0,1,...,p−1},m∈{0,1,...,p−2}

an,mµn,m(ρ),

where an,m is the multiplicity of σn,m = SymndetmF2 in the semi-simplification of Lk,τ , and where
µn,m(ρ) ∈ {0, 1, 2} is an integer explicitly defined (except the n = p−2 semi-simple scaler case) according
to ρ (see the section immediately above 1.2; it may also be useful to compare this to Buzzard-Diamond-
Jarvis [1] as a precursor to Gee-Kisin [2]). In fact, Kisin’s proof works verbatim for the inequality (see
Proposition 1.7.13):

e(R�,ψ
cr (k, τ, ρ)/π) ≤ µAut,cr(k, τ, ρ)

def
=

∑
n∈{0,1,...,p−1},m∈{0,1,...,p−2}

an,m,crµn,m(ρ),

where an,m,cr is the multiplicity of σn,m in the semi-simplification of Lk,τ,cr. With that in mind, we shall
only deal with the former.
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2.3 Proof

Given a pseudo-deformation t of tr ρ, let It denote the kernel of the corresponding map Rps(tr ρ)→ Ot.
Let I denote the intersection of all It where t is the the trace of a representation of type D; then there
exists a countable set UD

1 of pseudo-deformations of r such that I =
⋂
t∈UD It.

Definition. We say that ρ is

(Irr) if it is absolutely IRReducible;
(NTχ1,χ2

) if it is a Non-Trivial extension of a character χ2 : G → F× by a character χ1 : G → F×

such that χ1 and χ2 are distinct and χ1/χ2 6∈ {ω±1
cyclo};

(Tχ1,χ2) if it is a direct sum (i.e. a ‘Trivial’ extension) of distinct characters χ1 and χ1 such that
χ1/χ2 6∈ {ω±1};

(S3) if it has Scalar Semi-Simplification.

We will show firstly that
e(Rps

UD
(tr ρ)/π) ≤ µAut(k, τ, ρ)

case-by-case, and then compare e(R�,ψ(k, τ, ρ)/π) and e(Rps
UD

(tr ρ)/π) to deduce the inequality. In the
reducible case, one more or less has to prove inequalities over different components of SpecRps

UD
(tr ρ),

and its geometry, in particular, understanding its irreducible components is crucial in Kisin’s approach.

If ρ : GQp
→ GL2(E) is indecomposable, i.e., not reducible split, define

µAut,BDJ(k, τ, ρ)
def
=

∑
n∈{0,1,...,p−1},m∈{0,1,...,p−2}

an,mµn,m,BDJ(ρ)

by setting µn,m,BDJ(ρ) = 0 if µn,m(ρ) = 0 and µn,m,BDJ(ρ) = 1 otherwise; in the light of the Buzzard-
Dimaond-Jarvis conjecture, µn,m,BDJ(ρ) = 1 precisely when BDJ [1] predicts Serre weights for such
ρ.

Lemma 2 In view of computing eΣ, let Σ = {ρ} if ρ is (Irr), and let Σ = {ωn+1+m
cyclo unr(λ1λ2)} if

ρ ∼
(
ωn+1

cyclounr(λ1) ∗
0 unr(λ−1

1 )

)
⊗ ωmcyclounr(λ2), where 0 ≤ n,m ≤ p− 2 are integers and where unr(λ)

is the unramified character of GQp
sending the geometric Frobenius to λ ∈ F×. Assume, furthermore,

that if ρ is reducible, n = 0, and λ = ±1, then ∗ is a peu ramifié extension. Then

eΣ(V (UD)/π,Rps
UD

(tr ρ)/π) ≤ µAut,BDJ(k, τ, ρ)

unless ρ is (S3) in which case

eΣ(V (UD)/π,Rps
D (tr ρ)/π) ≤ 2µAut,BDJ(k, τ, ρ).

Sketch of proof. This is Lemma 1.6.8. Let G = GL2(Qp),K = GL2(Zp) and Z the centre of G. Let P
denote the set of representations π(r, λ, χ) such that V(π(r, λ, χ)) is a Jordan-Holder factor in ρ. Since
Lk,τ is finite-dimensional over F, there exists a filtration of KZ-subspaces {0} = L0 ⊂ L1 ⊂ · · · ⊂ Ln =
Lk,τ such that every quotient Li+1/Li is an irreducible KZ-module. As it is irreducible, we may and
will suppose that Li+1/Li = SymrF2 ⊗ χ ◦ det for some character χ : Q×p → F× such that χ|Z×p = dets.

By some general commutative algebra results about eΣ, it suffices to prove that, for Σ as defined above,

eΣ(c-IndGKZLi+1/Li, Ri) = µr,s,Aut,BDJ(ρ)

unless ρ is (S3) in which case

eΣ(c-IndGKZLi+1/Li, Ri) = 2µr,s,Aut,BDJ(ρ),

where Ri denote the image of Rps(ρ) in End(V((c-IndGKZLi+1/Li)P )).

1It is denoted by U0 in [4]
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Firstly, observe that, with r and χ fixed as above, µr,s,Aut,BDJ(ρ) 6= 0 if and only if there exists λ ∈ F
such that V(π(r, λ, χ)) is the element in Σ; this is not true in the peu-ramifié case without the condition
in the assertion.

If µr,s,Aut,BDJ(ρ) = 0, it follows from Lemma 1.6.5 that V((c-IndGKZLi+1/Li)P ) has no sub-quotients
isomorphic to Σ; hence eΣ = 0.

If µr,s,Aut,BDJ(ρ) 6= 0, it follows from Lemma 1.6.5 that

eΣ(V((c-IndGKZLi+1/Li)P ), Ri) = eΣ(V(Π(r, λ, χ)), Ri).

The Rps-module structure on V(Π(r, λ, χ)) is explicit and computable; and the RHS is 1 if ρ is not (S3)
while it is 2 if it is (S3). �

Definition. An irreducible component Z of SpecRps
UD

(tr ρ)[1/p] is said to be of irreducible type if
the generic point of Z corresponds to an absolutely irreducible representation. If it is not, Z is said to
be of reducible type.

In the reducible case, one can specify more. Suppose that the semi-simplification of ρ is the direct
sum of characters χ1 and χ2. Let t be a closed point of an irreducible component Z of reducible
type. The corresponding representation Vt is reducible (since the HT weights are distinct), and its
semi-simplification is the direct sum of characters χ1 and χ2. Which, we may and will assume, reduce
respectively to χ1 and χ2. We say that t is of type χ1 (resp. χ2) if χ1 (resp. χ2) is the character of
a one-dimensional subspace (as opposed to its one-dimensional quotient) of Vt. The following lemma
shows that all points of Z of reducible type is either of type χ1 and χ2 and we say the component Z is
of type χ1 or χ2 accordingly.

Lemma 3 One knows exactly when and how there can be an irreducible component of SpecRps
UD

(tr ρ)[1/p]
of reducible type.

Proof. This is Lemma 1.6.13 of [4]. �

Proposition 4 If ρ is (Irr), then

e(Rps
UD

(tr ρ)/π) ≤ µAut(k, τ, ρ).

If ρ is (NTχ1,χ2), choose UD,irr,χ1 so that SpecRps
UD,irr,χ1

(tr ρ) ⊂ SpecRps
UD

(tr ρ) is the Zariski closure

of the union of the components of irreducible type and reducible χ1 type. Then

e(Rps
UD,irr,χ1

(tr ρ)/π) ≤ µAut(k, τ, ρ).

If ρ is (S3), let UD,irr ⊂ UD denote a dense subset of points on the components of irreducible type
in SpecRps

UD
(tr ρ) and Cred denote the set of components of reducible type. Then

e(Rps
UD,irr

(tr ρ)/π) + |Cred| ≤ µAut,BDJ(k, τ, ρ).

Sketch of Proof.
(Irr): This is Proposition 1.6.10. By definition, Rps

UD
(tr ρ) is a quotient of Rps(tr ρ) ' R(ρ) (see

1.4.4 (1)); hence ‘by specialisation of the universal deformation R(ρ)-module’, there exists a rank 2 free
Rps
UD

(tr ρ)-module M(UD) on which GQp acts.
For g in GQp

, let

Pg(X) = X2 − T (g)X + (T (g)2 − T (g2))/2

where T : GQp → Rps
UD

(tr ρ) is the universal pseudo-deformation of tr ρ; it is the characteristic polynomial
of M(UD), and Pg(g) = 0 on V (UD) according to the action of Rps

UD
(tr ρ) on V (UD) (see Lemma 1.6.3).

It then follows from an algebra lemma (Lemma 1.6.11) that there is an injection:

M(UD)⊗Rps
UD

(tr ρ),η FracRps
UD

(tr ρ) −→ V (UD)⊗Rps
UD

(tr ρ),η FracRps
UD

(tr ρ)

at any generic point η of SpecRps
UD

(tr ρ). By ‘clearing the denominators’, one can then establish that
there is an injection homomorphism of Rps

UD
(tr ρ)-modules:

(1) M(UD) −→ V (UD).
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If we let Σ = {ρ}, unraveling the definition,

(2) e(Rps
UD

(tr ρ)/π) = eΣ(M(UD)/π,Rps
UD

(tr ρ)).

Combining,

e(Rps
UD

(tr ρ)/π) = eΣ(M(UD)/π,Rps
UD

(tr ρ)) (by (2))
≤ eΣ(V (UD)/π,Rps

UD
(tr ρ)) (by (1) and Corollary 1.3.4)

≤ µAut,BDJ(k, τ, ρ) (by 1.6.8, or Lemma 2 above)
= µAut(k, τ, ρ).

(NTχ1,χ2
): This is Proposition 1.6.15. For brevity, let U denote UD,irr,χ1

. Let Iirr (resp. Iχ1
) denote

the ideal of Rps
U (tr ρ) corresponding to the component of irreducible type (resp. of reducible χ1 type).

Let V (U)irr = V (U)/IirrV (U) and V (U)χ1
= V (U)/Iχ1

V (U).
As χ1 and χ2 are distinct and χ1/χ2 6∈ {ω±1}, Ext1(χ2, χ1) is one-dimensional and there exists a free

rank 2 Rps(tr ρ)-module M(U) (see Corollary 1.4.7) on which GQp acts; furthermore, M(U)/Iχ1M(U)
has a Rps(tr ρ)-line Lχ1

on which GQp
acts by a character lifting χ1.

Firstly observe that

(1) e{χ1}(R
ps
U (tr ρ)/(Iirr, π), Rps

U (tr ρ)/π) ≤ e{χ1}(V (U)irr/π,R
ps
U (tr ρ)/π);

this follows as in the case (Irr) above. Similarly,

(2) e{χ1}(R
ps
U (tr ρ)/(Iχ1

, π), Rps
U (tr ρ)/π) = e{χ1}(Lχ1

/π,Rps
U (tr ρ)/π) ≤ e{χ1}(V (U)χ1

/π,Rps
U (tr ρ)/π)

Finally observe that (3) V (U) −→ V (U)irr ⊕ V (U)χ1
is an isomorphism at the generic points of

SpecRps
U (tr ρ). Then

e(Rps
U (tr ρ)/π) = e(Rps

U (tr ρ)/(Iirr, π), Rps
U (tr ρ)/π) + e(Rps

U (tr ρ)/(Iχ1 , π), Rps
U (tr ρ)/π)

≤ e{χ1}(V (U)irr/π,R
ps
U (tr ρ)/π) + e{χ1}(V (U)χ1

/π,Rps
U (tr ρ)/π) (by (1) and (2))

= e{χ1}(V (U)/π,Rps
U (tr ρ)/π) (by (3) and 1.3.4 (2))

≤ µAut,BDJ(k, τ, ρ) (by 1.6.8, i.e., Lemma 2 above)
= µAut(k, τ, ρ).

(S3): This is Proposition 1.6.18.
Firstly observe that, for Σ as defined in 1.6.8, or Lemma 2 above,

(1) e(V (UD)/π,Rps
UD

(tr ρ)/π) = eΣ(V (UD)/π,Rps
UD

(tr ρ)/π)) ≤ 2µAut,BDJ(k, τ, ρ).

Secondly,

(2)
e(Rps

UD,irr
(tr ρ)/π) ≤ e(V (UD,irr)/π,R

ps
UD,irr

(tr ρ)/π)/2

= e(V (UD,irr)/π,R
ps
UD

(tr ρ)/π)/2

For every Z ∈ Cred, let UD,Z ⊂ UD denote a Zariski dense set of points of Z. Then

(3) 1 ≤ e(V (UD,Z)/π,Rps
UD

(tr ρ)/π)/2.

Combining,

e(Rps
UD,irr

(tr ρ)/π) + |Cred| ≤ e(V (UD,irr)/π,R
ps
UD

(tr ρ)/π)/2 +
∑
Z∈Cred

1 (by (2))

≤ e(V (UD,irr)/π,R
ps
UD

(tr ρ)/π)/2 +
∑
Z∈Cred

e(V (UD,Z)/π,Rps
UD

(tr ρ)/π)/2 (by (3))
= e(V (UD)/π,Rps

UD
(tr ρ)/π)/2

≤ µAut,BDJ(k, τ, ρ)(by (1)).

�

The following lemma is the first step towards comparing e(Rps
UD

(tr ρ)/π) and e(R�,ψ(k, τ, ρ)/π).
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Lemma 5 The universal property of Rps(tr ρ) defines a map

Rps(tr ρ) −→ R�,ψ(k, τ, ρ)

and it factors through Rps
UD

(tr ρ); if End(ρ) ⊆ F, then

Rps(tr ρ) −→ Rψ(k, τ, ρ)

factors through RψUD (k, τ, ρ). If, in particular, ρ is (NTχ1,χ2
), then it factors through Rps

UD,irr,χ1
(tr ρ) (as

defined in Proposition 4 above).

Proof. This is Lemma 1.7.1. It is clear by definition. �

Corollary 6 If ρ is either (Irr) or (NTχ1,χ2
), then

e(Rψ(k, τ, ρ)/π) ≤ µAut(k, τ, ρ).

Proof. Let U = UD if ρ is (Irr) and let U = UD,irr,χ1
if ρ is (NTχ1,χ2

). Then

e(Rψ(k, τ, ρ)/π) ≤ e(Rps
U (tr ρ)/π) ≤ µAut(k, τ, ρ),

where the first inequality follows from the preceding lemma while the second inequality follows from
1.6.10 if ρ is (Irr) and 1.6.15 if ρ is (NTχ1,χ2). �

This corollary leaves us the two more cases (Tχ1,χ2
) and (S3). In order to understand these cases,

one has to understand more about Rps
UD

(tr ρ). Suppose that ρ is either (Tχ1,χ2
) or (S3); in particular, ρ

is reducible.
From (1.5.11), there is a map

θ : Rps(tr ρ)→ F[[S]]

corresponding to the deformation V(Π(r, λ, χ)) over F[[S]] (where S = T − λ) of a Jordan-Holder factor
V(π(r, λ, χ)) of ρ; furthermore, since ρ is reducible, θ depends only on the semi-simplification of ρ and
not on (r, λ, χ).

Definition. Let J = ker θ.

Definition. Let Rord = R�,ψ(ρ)/J where by ‘J ’ we mean the image of J by Rps(tr ρ)→ R�,ψ(ρ).

Lemma 7 If ρ is (Tχ1,χ2
), then SpecRord has two components each of which is formally smooth over

F and dominates Rps
UD

(tr ρ)/J .

If, on the other hand, ρ is (S3) and ρ ∼
(

1 ∗
0 1

)
⊗χ where χ : GQp

→ F× satisfies χ2 = ψχcycl, then

SpecRord is irreducible, generically reduced and dominates Rps
UD

(tr ρ)/J . If, furthermore, ∗ = 0, then

(Rord)red is formally smooth over F.

Proof. This is Lemma 1.7.4 if ρ is (Tχ1,χ2
), while it is Lemma 1.7.5 if ρ is (S3). We leave it to the

reader to check their proofs. �

Definition. Let U ⊂ UD be a set of closed points of SpecRps
UD

(tr ρ) whose closure is a non-empty
collection of irreducible components. Define

RU

to be the image of R�,ψ(k, τ, ρ) in R�,ψ(k, τ, ρ)⊗Rps
UD

(tr ρ) R
ps
U (tr ρ)[1/p]).

A point t of SpecRU defined over a finite extension Et of E corresponds to a two-dimensional
representation of GQp over Et of type D whose trace reduces to tr ρ, and it lies on an irreducible
component in U .
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Lemma 8 If ρ is (Tχ1,χ2) or (S3), then

e(RU/π) ≤ e(Rps
U (tr ρ)/π)e(Rord).

If ρ is (Tχ1,χ2
) and U consists of type χ1, then

e(RU/π) ≤ e(Rps
U (tr ρ)/π).

Proof. This is Lemma 1.7.7. �

Proposition 9 If ρ is (Tχ1,χ2), then

e(R�,ψ(k, τ, ρ)/π) ≤ µAut(k, τ, ρ).

If ρ is (S3) and ρ ∼
(

1 ∗
0 1

)
⊗ χ, then

e(R�,ψ(k, τ, ρ)/π) ≤ e(Rord)µAut,BDJ(k, τ, ρ) = µAut(k, τ, ρ).

Sketch of proof.
(Tχ1,χ2

): This is Proposition 1.7.8. Let UD,irr be a subset of UD such that SpecRps
UD,irr

(tr ρ) is

the union of components of SpecRps
UD

(tr ρ) of irreducible type; and let UD,red,χ1(resp. UD,red,χ2) be
a subset of UD such that SpecRps

UD,red,χ1
(tr ρ) (resp. SpecRps

UD,red,χ2
(tr ρ)) is the union of components

of SpecRps
UD

(tr ρ) of reducible χ1 (resp. χ2) type. Note that UD,red,χ1(tr ρ) and UD,red,χ2(tr ρ) are
different from those ‘with irr in place of red ’ as appeared in Proposition 4 above, i.e., UD,irr,χ1

(tr ρ) and
UD,irr,χ2

(tr ρ) respectively.
By 1.7.4 and 1.7.7,

(1)
e(RUD,irr/π) ≤ e(Rord)e(Rps

UD,irr
/π) (by 1.7.7)

= 2e(Rps
UD,irr

/π) (by 1.7.4).

Let ρχ1,χ2
(resp. ρχ2,χ1

) denote a non-trivial extension of χ2 by χ1 (resp. χ1 by χ2). Then it follows
from 1.7.7. that

(2)
e(RUD,red,χ1

/π) ≤ e(Rps
UD,red,χ1

/π);

e(RUD,red,χ2
/π) ≤ e(Rps

UD,red,χ2
/π).

Combining,

e(R�,ψ(k, τ, ρ)/π) = e(RUD,irr/π) + e(RUD,red,χ1
/π) + e(RUD,red,χ2

/π)
≤ 2e(Rps

UD,irr
/π) + e(Rps

UD,red,χ1
/π) + e(Rps

UD,red,χ2
/π) (by (1) and (2))

=
(
e(Rps

UD,irr
/π) + e(Rps

UD,red,χ1
/π)
)

+
(
e(Rps

UD,irr
/π) + e(Rps

UD,red,χ2
/π)
)

= e(Rps
UD,irr,χ1

/π) + e(Rps
UD,irr,χ2

/π)

≤ µAut(k, τ, ρχ1,χ2
) + µAut(k, τ, ρχ2,χ1

)
= µAut(k, τ, ρ).

(S3): This is Proposition 1.7.10. Firstly observe that

(1) µAut(k, τ, ρ) = µp−2,s(ρ)µAut,BDJ(k, τ, ρ)

where χ|IQp = ωscyclo, and µp−2,s(ρ) = e(Rord).

We may and will suppose henceforth that the twist χ is trivial. For a component Z of SpecRps
UD

(tr ρ)[1/p]
of reducible type, let UD,Z denote a Zariski dense set of points in Z. Then

(2) e(RUD,Z/π) = e(Rord).

This is not exactly straightforward (see Kisin’s proof of Proposition 1.7.10). Combining,

e(R�,ψ(k, τ, ρ)/π) = e(RUD,irr) +
∑
Z∈Cred

e(RUD,Z/π)

≤
(
e(Rps

UD,irr
) +

∑
Z∈Cred

1
)
e(Rord) (by 1.7.7, U = UD,irr, UD,Z and (2))

≤ µAut,BDJ(k, τ, ρ)e(Rord) (by 1.6.18)
= µAut(k, τ, ρ) (by (1)),

where UD,irr denotes a Zariski dense set of points on the components of irreducible type and Cred denotes
the set of components of reducible type. �
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