The DS conjectures

Shu SASAKI

12th June 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Motivation

Let p be a rational prime. Given an odd continuous representation

$$\overline{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p),$$

Serre (as documented by Edixhoven) conjectured: there should be

► an eigenform f in $H^0(\overline{X}_{\Gamma_1(N)}, \omega^k(-Z_{\Gamma_1(N)}))$,

$$Z_{\Gamma_1(N)} = X_{\Gamma_1(N)} - Y_{\Gamma_1(N)},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

whose associated mod p Galois representation $\overline{\rho}_f$ is isomorphic to $\overline{\rho}$.

The predicted weight $k(\overline{\rho})$ depends only on $\overline{\rho}|_{D_{\rho}}$ and is defined purely in terms of $\overline{\rho}$ (as in Hanneke's talk).

If we assume $\overline{\rho}$ is modular, we can see a few glimpses of the geometric picture I would like to promote today.

$k(\overline{\rho})$ is minimal

Theorem (Coleman-Voloch/Gross/Edixhoven/Serre)

Suppose that there exists a cuspidal eigenform f as above such that $\overline{\rho}_f \simeq \overline{\rho}$. Then

 $k(\overline{\rho}) = w(f)$

where w(f) is the Hasse weight filtration:

$$w(f) = \min\{k - (p-1)\nu \mid H^{-\nu}f \in H^0(\overline{X}_{\Gamma_1(N_f)}, \omega^{k-(p-1)\nu})\}$$

(as in Payman's talk) and $k(\overline{\rho})$, as a result, is the minimal possible weight of mod p cuspidal eigenforms that give rise to $\overline{\rho}$.

Remark

The proof makes appeal to the idea of θ -cycles:

$$\{w(\theta(f)),\ldots,w(\theta^{p-1}(f))\}$$

subject to

$$\blacktriangleright w(\theta^p f) = w(\theta f),$$

w(θ(f)) ≤ w(f) + p + 1 and the equality holds if and only if p does not divide w(f).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Today

The DS paper is in some sense motivated to generalise the theorem to a (general) totally real field. Issues to overcome that I will highlight today are as follows:

 Lifting mod p HMFs to char 0 is no longer just about weight 1 forms.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Mod p modular Galois representations.
- Partial weight one forms.

A set of notation

Fix
$$\overline{\mathbb{Q}}, \overline{\mathbb{Q}}_{p}, \overline{\mathbb{F}}_{p},$$

 $\imath : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{p}$
 $\jmath : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}.$

Let F be a totally real field. Assume $[F : \mathbb{Q}] = d > 1$ and p is inert in F for simplicity (DS-II deals with the general ramified case). Let \mathbb{F} denote the residue field \mathcal{O}_F/p .

 $\overline{\mathbb{Q}}_{p},$

Let

$$\Sigma = \operatorname{Hom}_{\mathbb{Q}}(F, \overline{\mathbb{Q}});$$

$$i \circ \Sigma = \operatorname{Hom}_{\mathbb{Q}}(F, \overline{\mathbb{Q}}_p) \simeq \operatorname{Hom}_{\mathbb{F}_p}(\mathbb{F}, \overline{\mathbb{F}}_p)$$

 $j \circ \Sigma = \operatorname{Hom}_{\mathbb{O}}(F, \mathbb{R})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Frobenius Φ acts on $i \circ \Sigma$. If we fix τ in $i \circ \Sigma$,

$$i \circ \Sigma = \{\tau, \Phi \circ \tau, \dots, \Phi^{f-1} \circ \tau\} \simeq \mathbb{Z}/f\mathbb{Z}$$

where $|\mathbb{F}| = p^f$.

Finally, let

$$G = \operatorname{Res}_{F/\mathbb{Q}} \operatorname{GL}_2.$$

By slight abuse of notation, it will also mean its model:

$$G(\mathbb{F}_p) = \mathrm{GL}_2(\mathbb{F}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A quick recap

Let

$$\overline{\rho}: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p)$$

be totally odd and continuous.

Definition

Let V be a finite-dimensional $\overline{\mathbb{F}}_p$ -representation of $G(\mathbb{F}_p)$. We say that $\overline{\rho}$ is algebraic modular of weight V if there exist

- a quaternion algebra D over F split at p and ramified at all but one place in j ο Σ,
- ▶ a sufficiently small open compact subgroup $U \subset (D \otimes_F \mathbb{A}_F^\infty)^{\times}$ (\rightsquigarrow the Shimura curve Y_U over F) such that
 - U is of level prime to p (i.e. $G(\mathbb{Z}_p) \subset U$),
 - if $U^+ = \ker(U \to G(\mathbb{F}_p))$, then $Y_{U^+} \to Y_U$ is étale of degree equal to $|G(\mathbb{F}_p)|$

such that $\overline{\rho}$ is an $\overline{\mathbb{F}}_{\rho}[\operatorname{Gal}(\overline{F}/F)]$ -subquotient of $H^{1}_{\operatorname{\acute{e}t}}(Y_{U} \times \overline{F}, \mathcal{V})(1)$.

Lemma

 $\overline{\rho}$ is algebraic modular of weight V (as above) if and only if $\overline{\rho}$ is algebraic modular of weight some Jordan-Holder factor of V. A finite-dimensional irreducible $\overline{\mathbb{F}}_p$ -representation V of $G(\mathbb{F}_p)$ is of the form

$$V_{k,\ell} = \bigotimes_{ au \in \iota \circ \Sigma} \det^{\ell_{ au}} \operatorname{Sym}^{k_{ au}-2}(V_{st} \otimes_{\mathbb{F}, au} \overline{\mathbb{F}}_{
ho}),$$

for $(k, \ell) \in \mathbb{Z}^{i \circ \Sigma} \times \mathbb{Z}^{i \circ \Sigma}$, where $0 \leq \ell_{\tau}, k_{\tau} - 2 \leq p - 1$ but the ℓ_{τ} are not simultaneously p - 1 for all τ , and is often called a Serre weight.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Buzzard-Diamond-Jarvis conjecture

Given $\overline{\rho}$, the BDJ paper defines a set of Serre weights

 $W(\overline{\rho})$

as in Fred's talk (an example in the case $[F:\mathbb{Q}]=2)$ and conjectures:

Conjecture (BDJ)

 $W(\overline{\rho}) = \{ \text{Serre weight } V \, | \, \overline{\rho} \text{ is algebraic modular of weight } V \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Work of Gee et.al.

Theorem (Gee-Liu-Savitt,....)

Suppose that p > 2. The BDJ conjecture holds if

- $\blacktriangleright \overline{\rho}$ is modular,
- $\overline{\rho}$ is irreducible when restricted to $\operatorname{Gal}(\overline{F}/F(\zeta_p))$,
- ▶ when p = 5, the projective image of $\overline{\rho}|_{\operatorname{Gal}(\overline{F}/F(\zeta_p))}$ is not A_5 .

When p is unramified in F, GLS (JAMS) proves the BDJ conjecture in the unitary case. In this case, the BDJ conjecture is deduced by Gee-Kisin/Newton via 'mod p Langlands transfer (from unitary to quaternionic)'.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Set-up for the DS conjecture

Let Γ be an open compact subgroup of $G(\mathbb{A}^{\infty})$ that is maximal compact hyperspecial at p and 'sufficiently small'. There exist

• an integral model Y_{Γ} over $\overline{\mathbb{Z}}_p$ of level Γ for

 $Y_{\Gamma}(\mathbb{C}) = G(\mathbb{Q}) \backslash G(\mathbb{A}) / \Gamma(\mathbb{R}^{\times} \mathrm{SO}_{2}(\mathbb{R}))^{\Sigma}$

• an automorphic bundle $\mathscr{A}_{(k,\ell)}$ associated to $(k,\ell) \in \mathbb{Z}^{i \circ \Sigma} \times \mathbb{Z}^{i \circ \Sigma}$:

$$\mathscr{A}_{(k,\ell)} = \bigotimes_{\tau} \omega_{\tau}^{k_{\tau}} \otimes \delta_{\tau}^{\ell_{\tau}}$$

where

$$\omega = s_* \Omega_{\mathcal{A}/Y_{\Gamma}} = \bigoplus_{\tau} \omega_{\tau}$$

and

$$\delta = \bigwedge_{\mathscr{O}_{F} \otimes_{\mathbb{Z}_{p}} \mathscr{O}_{Y_{\Gamma}}}^{2} R^{1} s_{*} \Omega^{\bullet}_{A/Y_{\Gamma}} = \bigoplus_{\tau} \delta_{\tau}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example $(\ell = 0)$

In stark contract to the case $F = \mathbb{Q}$, there are lots of mod p Hilbert modular forms of 'negative weights'.

Example

For every τ in $i \circ \Sigma$, let $H_{\tau} \in H^0(Y_{\Gamma} \times \overline{\mathbb{F}}_p, \omega_{\Phi^{-1} \circ \tau}^p \otimes \omega_{\tau}^{-1})$ denote the partial Hasse invariant at τ of weight

$$h_{ au} = (0, \dots, 0, p, -1, 0, \dots, 0)$$

where p (resp. -1) sits at $\Phi^{-1} \circ \tau$ (resp. τ).

Mod p modular Galois representations

Theorem (DS)

Let f be an element $H^0(Y_{\Gamma} \times \overline{\mathbb{F}}_p, \mathscr{A}_{(k,\ell)})$ and S be a finite set of finite places in F, containing all v dividing p and all v such that $\operatorname{GL}_2(\mathscr{O}_{F_v}) \not\subset \Gamma$. Suppose that

$$T_{\mathbf{v}}f = \alpha_{\mathbf{v}}f$$

and

$$S_v f = \beta_v f$$

for all v not in S. Then there exists a continuous representation

$$\overline{\rho}_f: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p)$$

which is unramified outside S and the characteristic polynomial in X of $\overline{\rho}_f(\operatorname{Frob}_v)$ is

$$X^2 - \alpha_{\nu}X + \beta_{\nu}\mathbf{N}_{F/\mathbb{Q}}(\nu).$$

Remark

The novelty of our theorem is that (k, ℓ) does not have to satisfy the parity condition that $k_{\tau} + 2\ell_{\tau}$ is independent of τ in Σ . The parity case is known by Emerton-Reduzzi-Xiao and Goldring-Koskivirta.

Idea of our proof

Recall from Fred's remark: not every $\overline{\rho}$ arises as the reduction of a characteristic zero eigenform of level prime to p (unless it is expected to be modular of paritious weight).

The idea then is to establish congruences, i.e., find an eigenform of parallel weight N + 2 (to be specified) and level $\Gamma \cap \Gamma_1(p)$ which is congruent mod p to f and which can be lifted to a characteristic zero eigenform when N is sufficiently large (the ampleness of a line bundle over $X_{\Gamma \cap \Gamma_1(p)}$).

The '+2' in weight comes from a dualising/regular differential sheaf and '+N' is a piece of apparatus needed for lifting forms of weight that is not regular and not paritious.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Preliminary reduction steps

• Γ may be taken to be a principal congruence subgroup of level prime to p,

• by twisting if necessary, WLOG $\ell_{ au} = -1$ for every au in $\imath \circ \Sigma$,

• (can always) find $N \in \mathbb{Z}$ and $r \in \mathbb{Z}^{i \circ \Sigma}$ such that $0 \le r_{\tau} \le p - 1$ but not all r_{τ} are simultaneously p - 1 such that k - (N + 2 - r) is a linear combination of h_{τ} 's. Multiplying H_{τ} 's defines an injection of global sections $\rightsquigarrow k = N + 2 - r$.

$$\pi: Y_{\Gamma \cap \Gamma_1(p)} \to Y_{\Gamma}$$

with extension

$$\pi: X_{\Gamma \cap \Gamma_1(p)} \to X_{\Gamma}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

to minimal compactifications]

• observe that there is a Hecke equivariant injection

$$H^{0}(\overline{Y}_{\Gamma},\mathscr{A}_{(k,-1)}) \hookrightarrow H^{0}(\overline{Y}_{\Gamma\cap\Gamma_{1}(\rho)},\mathscr{A}_{(N+2,-1)})$$

with its image contained in

$$\begin{array}{ccc} H^{0}(\overline{X}_{\Gamma\cap\Gamma_{1}(p)},\overline{\iota_{*}K}\otimes_{\mathscr{O}_{\overline{X}_{\Gamma\cap\Gamma_{1}(p)}}}\overline{\omega}^{N}) & \subset & H^{0}(\overline{X}_{\Gamma\cap\Gamma_{1}(p)},\overline{\iota_{*}K}\otimes_{\mathscr{O}_{\overline{X}_{\Gamma\cap\Gamma_{1}(p)}}}\overline{\omega}^{N}) \\ & & \parallel \\ & H^{0}(\overline{Y}_{\Gamma\cap\Gamma_{1}(p)},\mathscr{A}_{(N+2,-1)}) \end{array}$$

where

$$\blacktriangleright \iota: Y_{\Gamma \cap \Gamma_1(p)} \hookrightarrow X_{\Gamma \cap \Gamma_1(p)},$$

- K denotes the dualising sheaf over the Cohen-Macaulay scheme Y_{Γ∩Γ1}(p),
- and $\omega = \mathscr{A}_{(1,0)}$ is the ample line bundle $\pi^* (\bigotimes_{\tau} \omega_{X_{\Gamma},\tau})$.

Interlude: where does this injection come from? There is a component

$$\begin{array}{cccc} \overline{Y}^R_{\Gamma\cap\Gamma_1(p)} & \stackrel{\gamma}{\hookrightarrow} & \overline{Y}_{\Gamma\cap\Gamma_1(p)} \\ \downarrow & & \downarrow \\ \overline{Y}^R_{\Gamma\cap\Gamma_0(p)} & \stackrel{(A,\ker F)\leftarrow A}{\simeq} & \overline{Y}_{\Gamma} \end{array}$$

which may be described in terms of Raynaud bundles:

$$\overline{Y}_{\Gamma\cap\Gamma_{1}(p)}^{R} = \underline{\operatorname{Spec}} \left(\operatorname{Sym}_{\mathscr{O}_{\overline{Y}_{\Gamma}}} \left(\bigoplus_{\tau \in j \circ \Sigma} \overline{\omega}_{\tau} \right) / \left\langle \{ \overline{\omega}_{\tau}^{p} \}_{\tau \in j \circ \Sigma}, \otimes_{\tau} \overline{\omega}_{\tau}^{p-1} \right\rangle \right).$$

The push-forward is a union of automorphic bundles over \overline{Y}_{Γ} :

$$(\pi \circ \gamma)_* \mathscr{O}_{\overline{Y}_{\Gamma \cap \Gamma_1(p)}} \simeq \bigoplus_r \mathscr{A}_{(r,0)}$$

where r ranges over $\mathbb{Z}^{\iota \circ \Sigma}$ such that $0 \leq r_{\tau} \leq p-1$ but the r_{τ} are not simultaneously p-1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (DKS)

$$R^r \pi_* K = 0$$

for r > 0.

•

• the theorem implies $R^1\pi_*(\iota_*K) = 0$, hence $\pi_*(\iota_*K) \to \pi_*(\overline{\iota_*K})$ is surjective and, combined with the ampleness of ω , it follows that

$$\begin{array}{cccc} H^{0}(X_{\Gamma}, \pi_{*}\iota_{*}K \otimes_{\mathscr{O}_{X_{\Gamma}}} \omega^{N}) & \longrightarrow & H^{0}(X_{\Gamma}, \pi_{*}(\overline{\iota_{*}K}) \otimes_{\mathscr{O}_{X_{\Gamma}}} \overline{\omega}^{N}) \\ & & \parallel \\ H^{0}(X_{\Gamma \cap \Gamma_{1}(p)}, \mathscr{A}_{(N+2,-1)}) & \longrightarrow & H^{0}(\overline{X}_{\Gamma \cap \Gamma_{1}(p)}, \overline{\iota_{*}K} \otimes_{\mathscr{O}_{\overline{X}_{\Gamma \cap \Gamma_{1}(p)}}} \overline{\omega}^{N}) \end{array}$$

is surjective when N is sufficiently large, because

$$H^1(X_{\Gamma}, \pi_*\iota_*K \otimes_{\mathscr{O}_{X_{\Gamma}}} \omega^N) = 0.$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

• there exists a Galois representation associated to an eigenform in $H^0(X_{\Gamma\cap\Gamma_1(p)}, \mathscr{A}_{(N+2,-1)})[1/p]$ by work of Carayol, Taylor,....

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The folklore conjecture

Conjecture (DS)

Every irreducible, continuous, totally odd representation

$$\overline{\rho}: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p)$$

is modular (of some weight) in our sense.

How can we make this statement, i.e., the weight part, more precise? We will do this in terms of the behaviour of $\overline{\rho}_{p} = \overline{\rho}|_{D_{p}}$.

In preparation for formulating the DS conjecture (the DK cone)

Definition (Diamond-Kassaei cones)

Let

$$\Xi = \{k = \sum_{\tau \in \iota \circ \Sigma} k_{\tau} \tau \, | \, pk_{\tau} \ge k_{\Phi^{-1} \circ \tau}\} \subset \mathbb{Z}^{\iota \circ \Sigma}$$

and

$$\Xi^+ = \{k \in \Xi \mid k_\tau \ge 1\}.$$

Define

 $k \succeq k'$

if k - k' is a non-negative linear combination of the weights h_{τ} of the partial Hasse invariants.

Conjecture

Conjecture (DS) Let

$$\overline{\rho}: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p),$$

totally odd, continuous, irreducible.

Fix ℓ in $\mathbb{Z}^{\iota \circ \Sigma}$. Then there exists $k(\overline{\rho}, \ell)$ lying in Ξ^+ satisfying the following conditions:

- $\overline{\rho}$ is modular of weight (k, ℓ) if and only if $k \succeq k(\overline{\rho}, \ell)$
- if k ∈ Ξ⁺, then k ≽ k(p̄, ℓ) if and only if p̄|_{Gal(Q̄_p/F_p)} has a crystalline lift of weight (k, ℓ), i.e. of Hodge-Tate weight (k + ℓ − 1, ℓ).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Remark

Assuming $\overline{\rho}$ is (geometrically) modular, the existence of $k(\overline{\rho}, \ell)$ is suggested by DK- the weight filtration w(f) of a mod p HMF f lies in Ξ (as explined in Payman's talk).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The first condition: 'minimality'

Assuming the existence of $k(\overline{\rho}, \ell) \in \Xi^+$ satisfying the first condition, one sees that

- the conjecture implies the folklore conjecture earlier,
- the conjecture (i.e. the second condition) boils down to

Conjecture (DS)

If $k \in \Xi^+$, then $\overline{\rho}$ is modular of weight (k, ℓ) if and only if $\overline{\rho}_p$ has crystalline lift of weight (k, ℓ) .

The second condition: *p*-adic Hodge-theory

The second condition is suggested by the Breuil-Mézard conjecture and modular representation theory of $G(\mathbb{F}_p)$ - it is the underlying theme of DKS.

The qualification ' $k \in \Xi^+$ ' in the second condition is needed– if $k \notin \Xi^+$, the condition $k \succeq k(\overline{\rho}, \ell)$ does not imply that $\overline{\rho}_p$ has crystalline lift of weight (k, ℓ) .

Algebraic modularity = geometric modularity

Conjecture (DS) Let $(k, \ell) \in \mathbb{Z}^{i \circ \Sigma} \times \mathbb{Z}^{i \circ \Sigma}$ and $k_{\tau} \geq 2$ for every τ in $i \circ \Sigma$. If $\overline{\rho}$ is algebraic modular of weight (k, ℓ) , i.e., of weight

$$V_{k,1-k-\ell} = \bigotimes_{\tau} \det^{1-k_{\tau}-\ell_{\tau}} \operatorname{Sym}^{k_{\tau}-2}(V_{st} \otimes_{\tau} \overline{\mathbb{F}}_{\rho}),$$

then $\overline{\rho}$ is modular of weight (k, ℓ) .

Furthermore, if $k \in \Xi^+$, the converse holds.

Remarks

We know that if $\overline{\rho}$ is algebraic modular of paritious weight (k, ℓ) , then $\overline{\rho}$ is modular of weight (k, ℓ) .

By our construction of modular Galois representations, if $\overline{\rho}$ is modular of some weight, $\overline{\rho}$ is algebraic modular of some weight.

The DKS paper was motivated by this conjecture.

Example 1: $F = \mathbb{Q}$ and $\ell = 0$

$$\Xi^+ = \{k \ge 1\},$$

 $k \succeq k' ext{ if } k - k' = (p-1)v$

for a non-negative integer v.

There exists $k(\overline{\rho}) \ge 1$ such that the following are equivalent: for every $k \ge 1$,

- ▶ $\overline{\rho}$ is modular of weight *k*,
- $\blacktriangleright \ k \succeq k(\overline{\rho}),$
- $\overline{\rho}_p$ has a crystalline lift of weight (k-1,0),

 $\rightsquigarrow k(\overline{\rho})$ is the smallest possible weight for which $\overline{\rho}$ is modular (see Hanneke's talk).

Example 2: $[F : \mathbb{Q}] = 2$ and $\ell = 0$

Fix τ in $\imath \circ \Sigma$. Let

$$i \circ \Sigma = \{ \tau, \Phi \circ \tau = \Phi^{-1} \circ \tau \}.$$

Theorem (DS)

Let $2 \leq r \leq p$ and suppose that r is odd. Suppose that $\overline{\rho} : \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p)$ is irreducible and modular.

If $\overline{\rho}_p$ has crystalline lift of weight

((r, 1), (0, 0))

(=HT weight ((r - 1, 0), (0, 0))) then $\overline{\rho}$ is modular of weight ((r, 1), (0, 0)).

 $[\tau$ -labelled weights are always 'on the left']

Proof (Sketch)

For brevity, we only sketch out proof when 2 < r; the case r = 2 is similar. We furthermore assume that $\overline{\rho}$ is of Taylor-Wiles type–the exceptional case can be dealt with by an ad hoc argument.

Step 1

Given that $\overline{\rho}_p$ has crystalline lift of weight

((r, 1), (0, 0)),

we deduce from p-adic Hodge theory that $\overline{\rho}_p$ also has crystalline lifts of weight

$$(k, \ell) = ((r - 1, p + 1), (0, 0))$$

and

$$(k', \ell') = ((r+1, p+1), (-1, 0)).$$

'p-adic Hodge theory'?

For example, suppose $\overline{\rho}_p$ is reducible and is of the form $\begin{pmatrix} \overline{\chi}_1 & * \\ 0 & \overline{\chi}_2 \end{pmatrix}$ where

$$\begin{array}{ccccc} H^{-}(F_{p},\mathbb{Q}_{p}(\chi)) &\leftarrow & H^{-}(F_{p},\mathbb{Z}_{p}(\chi)) &\rightarrow & H^{-}(F_{p},\mathbb{F}_{p}(\chi)) \\ & \cup & & \cup & & \cup \\ H^{1}_{\mathsf{BK}}(F_{p},\overline{\mathbb{Q}}_{p}(\chi)) &\leftarrow & \mathsf{BK}_{\chi} &\rightarrow & \overline{\mathsf{BK}}_{\chi} \end{array}$$

Then it follows from

$$\lambda_{\tau}^{r-1} = \lambda_{\tau}^{r-2} \lambda_{\Phi \circ \tau}^{p}$$

and

$$\lambda_{\tau}^{r-1} = \lambda_{\tau}^{r} \lambda_{\Phi \circ \tau}^{-p}$$

that $\overline{\chi}$ has crystalline lifts $\chi_{(2-r,-p)}$ and $\chi_{(-r,p)}$ of Hodge-Tate type

$$(2 - r, -p)$$

and

$$(-r, p)$$

respectively, and one can check in both cases that

$$* \in \overline{\mathsf{BK}}_{\chi_{(2-r,-p)}} = H^1(F_p, \overline{\mathbb{F}}_p(\chi_{(2-r,-p)}))$$

and

$$* \in \overline{\mathsf{BK}}_{\chi_{(-r,p)}} = \overline{\mathsf{BK}}_{\chi}.$$

Step 2: algebraic companion forms

By work of Gee and his collaborators on the BDJ conjecture that $\overline{\rho}$ is algebraic modular of weight (k, ℓ) (=Serre weight $V_{k,1-k-\ell}$) and (k', ℓ') .

Step 3: geometric companion forms

Since r and 1 are paritious, $\overline{\rho}$ is geometric modular of weight (k, ℓ) and (k', ℓ') .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Step 4: combinatorics

Let f (resp. f') be a geometric HMF of weight (k, ℓ) (resp. (k', ℓ')) such that $\overline{\rho}_f \simeq \overline{\rho}$ (resp. $\overline{\rho} \simeq \overline{\rho}_{f'}$). One observes $\blacktriangleright \ \theta_{\tau}(f)$ is of weight

$$((r-1, p+1), (0, 0)) + ((1, p), (-1, 0)) = ((r, 2p+1), (-1, 0)),$$

((r+1, p+1), (-1, 0))+((-1, p), (0, 0)) = ((r, 2p+1), (-1, 0)),

$$\blacktriangleright \ \theta_{\tau}(f) = f' H_{\tau}.$$

 θ -operators/cycles

Theorem (AG)

For any HMF f of weight (k, ℓ) , the image $\theta_{\tau}(f)$ is divisible by H_{τ} if and only if f is divisible by H_{τ} or p divides k_{τ} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Step 5: a mod p HMF of partial weight one

Deduce from the theorem that f is divisible by H_{τ} . The HMF f/H_{τ} of weight

$$((r-1, p+1), (0, 0)) - ((-1, p), (0, 0)) = ((r, 1), (0, 0))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is what we are looking for.