The DS conjectures

Shu SASAKI

12th June 2020

Motivation

Let p be a rational prime. Given an odd continuous representation

$$
\bar{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

Serre (as documented by Edixhoven) conjectured: there should be

- $k=k(\bar{\rho}) \geq 1$,
- $N=N(\bar{\rho}) \geq 1$ the prime-to- p Artin conductor,
- an eigenform f in $H^{0}\left(\bar{X}_{\Gamma_{1}(N)}, \omega^{k}\left(-Z_{\Gamma_{1}(N)}\right)\right)$,

$$
Z_{\Gamma_{1}(N)}=X_{\Gamma_{1}(N)}-Y_{\Gamma_{1}(N)}
$$

whose associated $\bmod p$ Galois representation $\bar{\rho}_{f}$ is isomorphic to $\bar{\rho}$.

The predicted weight $k(\bar{\rho})$ depends only on $\left.\bar{\rho}\right|_{D_{\rho}}$ and is defined purely in terms of $\bar{\rho}$ (as in Hanneke's talk).

If we assume $\bar{\rho}$ is modular, we can see a few glimpses of the geometric picture I would like to promote today.

$k(\bar{\rho})$ is minimal

Theorem (Coleman-Voloch/Gross/Edixhoven/Serre)

Suppose that there exists a cuspidal eigenform f as above such that $\bar{\rho}_{f} \simeq \bar{\rho}$. Then

$$
k(\bar{\rho})=w(f)
$$

where $w(f)$ is the Hasse weight filtration:

$$
w(f)=\min \left\{k-(p-1) v \mid H^{-v} f \in H^{0}\left(\bar{X}_{\Gamma_{1}\left(N_{f}\right)}, \omega^{k-(p-1) v}\right)\right\}
$$

(as in Payman's talk) and $k(\bar{\rho})$, as a result, is the minimal possible weight of $\bmod p$ cuspidal eigenforms that give rise to $\bar{\rho}$.

Remark

The proof makes appeal to the idea of θ-cycles:

$$
\left\{w(\theta(f)), \ldots, w\left(\theta^{p-1}(f)\right)\right\}
$$

subject to

- $w\left(\theta^{p} f\right)=w(\theta f)$,
- $w(\theta(f)) \leq w(f)+p+1$ and the equality holds if and only if p does not divide $w(f)$.

Today

The DS paper is in some sense motivated to generalise the theorem to a (general) totally real field. Issues to overcome that I will highlight today are as follows:

- Lifting mod p HMFs to char 0 is no longer just about weight 1 forms.
- Mod p modular Galois representations.
- Partial weight one forms.
- Compatibility with other $\bmod p$ modularity of $\bar{\rho}$ (i.e., BDJ/algebraic modularity of $\bar{\rho}$).

A set of notation

Fix $\overline{\mathbb{Q}}, \overline{\mathbb{Q}}_{p}, \overline{\mathbb{F}}_{p}$,

$$
\begin{aligned}
& \imath: \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{p}, \\
& \jmath: \overline{\mathbb{Q}} \hookrightarrow \mathbb{C} .
\end{aligned}
$$

Let F be a totally real field. Assume $[F: \mathbb{Q}]=d>1$ and p is inert in F for simplicity (DS-II deals with the general ramified case). Let \mathbb{F} denote the residue field \mathscr{O}_{F} / p.

Let

$$
\begin{gathered}
\Sigma=\operatorname{Hom}_{\mathbb{Q}}(F, \overline{\mathbb{Q}}) ; \\
\imath \circ \Sigma=\operatorname{Hom}_{\mathbb{Q}}\left(F, \overline{\mathbb{Q}}_{p}\right) \simeq \operatorname{Hom}_{\mathbb{F}_{p}}\left(\mathbb{F}, \overline{\mathbb{F}}_{p}\right) \\
\jmath \circ \Sigma=\operatorname{Hom}_{\mathbb{Q}}(F, \mathbb{R})
\end{gathered}
$$

The Frobenius Φ acts on $\imath \circ \Sigma$. If we fix τ in $\imath \circ \Sigma$,

$$
\imath \circ \Sigma=\left\{\tau, \Phi \circ \tau, \ldots, \Phi^{f-1} \circ \tau\right\} \simeq \mathbb{Z} / f \mathbb{Z}
$$

where $|\mathbb{F}|=p^{f}$.
Finally, let

$$
G=\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2} .
$$

By slight abuse of notation, it will also mean its model:

$$
G\left(\mathbb{F}_{p}\right)=\mathrm{GL}_{2}(\mathbb{F})
$$

A quick recap

Let

$$
\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

be totally odd and continuous.

Definition

Let V be a finite-dimensional $\overline{\mathbb{F}}_{p}$-representation of $G\left(\mathbb{F}_{p}\right)$. We say that $\bar{\rho}$ is algebraic modular of weight V if there exist

- a quaternion algebra D over F split at p and ramified at all but one place in $\jmath \circ \Sigma$,
- a sufficiently small open compact subgroup $U \subset\left(D \otimes_{F} \mathbb{A}_{F}^{\infty}\right)^{\times}$ $\left(\rightsquigarrow\right.$ the Shimura curve Y_{U} over F) such that
- U is of level prime to p (i.e. $G\left(\mathbb{Z}_{p}\right) \subset U$),
- if $U^{+}=\operatorname{ker}\left(U \rightarrow G\left(\mathbb{F}_{p}\right)\right)$, then $Y_{U^{+}} \rightarrow Y_{U}$ is étale of degree equal to $\left|G\left(\mathbb{F}_{p}\right)\right|$
such that $\bar{\rho}$ is an $\overline{\mathbb{F}}_{p}[\operatorname{Gal}(\bar{F} / F)]$-subquotient of $H_{\text {êt }}^{1}\left(Y_{U} \times \bar{F}, \mathcal{V}\right)(1)$.

Lemma

$\bar{\rho}$ is algebraic modular of weight V (as above) if and only if $\bar{\rho}$ is algebraic modular of weight some Jordan-Holder factor of V. A finite-dimensional irreducible $\overline{\mathbb{F}}_{p}$-representation V of $G\left(\mathbb{F}_{p}\right)$ is of the form

$$
V_{k, \ell}=\bigotimes_{\tau \in \imath\llcorner\Sigma} \operatorname{det}^{\ell} \operatorname{Sym}^{k_{\tau}-2}\left(V_{s t} \otimes_{\mathbb{F}, \tau} \overline{\mathbb{F}}_{p}\right)
$$

for $(k, \ell) \in \mathbb{Z}^{20 \Sigma} \times \mathbb{Z}^{20 \Sigma}$, where $0 \leq \ell_{\tau}, k_{\tau}-2 \leq p-1$ but the ℓ_{τ} are not simultaneously $p-1$ for all τ, and is often called a Serre weight.

The Buzzard-Diamond-Jarvis conjecture

Given $\bar{\rho}$, the BDJ paper defines a set of Serre weights

$$
W(\bar{\rho})
$$

as in Fred's talk (an example in the case $[F: \mathbb{Q}]=2$) and conjectures:

Conjecture (BDJ)
$W(\bar{\rho})=\{$ Serre weight $V \mid \bar{\rho}$ is algebraic modular of weight $V\}$.

Work of Gee et.al.

Theorem (Gee-Liu-Savitt,....)
Suppose that $p>2$. The BDJ conjecture holds if

- $\bar{\rho}$ is modular,
- $\bar{\rho}$ is irreducible when restricted to $\operatorname{Gal}\left(\bar{F} / F\left(\zeta_{p}\right)\right)$,
- when $p=5$, the projective image of $\left.\bar{\rho}\right|_{\operatorname{Gal}\left(\bar{F} / F\left(\zeta_{\rho}\right)\right)}$ is not A_{5}.

When p is unramified in F, GLS (JAMS) proves the BDJ conjecture in the unitary case. In this case, the BDJ conjecture is deduced by Gee-Kisin/Newton via 'mod p Langlands transfer (from unitary to quaternionic)'.

Set-up for the DS conjecture

Let Γ be an open compact subgroup of $G\left(\mathbb{A}^{\infty}\right)$ that is maximal compact hyperspecial at p and 'sufficiently small'. There exist

- an integral model Y_{Γ} over $\overline{\mathbb{Z}}_{p}$ of level Γ for

$$
Y_{\Gamma}(\mathbb{C})=G(\mathbb{Q}) \backslash G(\mathbb{A}) / \Gamma\left(\mathbb{R}^{\times} \mathrm{SO}_{2}(\mathbb{R})\right)^{\Sigma}
$$

- an automorphic bundle $\mathscr{A}_{(k, \ell)}$ associated to $(k, \ell) \in \mathbb{Z}^{20 \Sigma} \times \mathbb{Z}^{20 \Sigma}$:

$$
\mathscr{A}_{(k, \ell)}=\bigotimes_{\tau} \omega_{\tau}^{k_{\tau}} \otimes \delta_{\tau}^{\ell_{\tau}}
$$

where

$$
\omega=s_{*} \Omega_{A / Y_{\Gamma}}=\bigoplus_{\tau} \omega_{\tau}
$$

and

$$
\delta=\bigwedge_{\mathscr{O}_{F} \otimes_{\mathbb{Z}_{p}} \mathscr{O}_{Y_{\Gamma}}}^{2} R^{1} s_{*} \Omega_{A / Y_{\Gamma}}^{\bullet}=\bigoplus_{\tau} \delta_{\tau} .
$$

Example $(\ell=0)$

In stark contract to the case $F=\mathbb{Q}$, there are lots of $\bmod p$ Hilbert modular forms of 'negative weights'.

Example
For every τ in $\imath \circ \Sigma$, let $H_{\tau} \in H^{0}\left(Y_{\Gamma} \times \overline{\mathbb{F}}_{p}, \omega_{\phi^{-1} \circ \tau}^{p} \otimes \omega_{\tau}^{-1}\right)$ denote the partial Hasse invariant at τ of weight

$$
h_{\tau}=(0, \ldots, 0, p,-1,0, \ldots, 0)
$$

where $p($ resp. -1$)$ sits at $\Phi^{-1} \circ \tau($ resp. $\tau)$.

Mod p modular Galois representations

Theorem (DS)
Let f be an element $H^{0}\left(Y_{\Gamma} \times \overline{\mathbb{F}}_{p}, \mathscr{A}_{(k, \ell)}\right)$ and S be a finite set of finite places in F, containing all v dividing p and all v such that $\mathrm{GL}_{2}\left(\mathscr{O}_{F_{v}}\right) \not \subset \Gamma$.
Suppose that

$$
T_{v} f=\alpha_{v} f
$$

and

$$
S_{v} f=\beta_{v} f
$$

for all v not in S. Then there exists a continuous representation

$$
\bar{\rho}_{f}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

which is unramified outside S and the characteristic polynomial in X of $\bar{\rho}_{f}\left(\operatorname{Frob}_{v}\right)$ is

$$
X^{2}-\alpha_{v} X+\beta_{v} \mathbf{N}_{F / \mathbb{Q}}(v)
$$

Remark

The novelty of our theorem is that (k, ℓ) does not have to satisfy the parity condition that $k_{\tau}+2 \ell_{\tau}$ is independent of τ in Σ. The parity case is known by Emerton-Reduzzi-Xiao and Goldring-Koskivirta.

Idea of our proof

Recall from Fred's remark: not every $\bar{\rho}$ arises as the reduction of a characteristic zero eigenform of level prime to p (unless it is expected to be modular of paritious weight).

The idea then is to establish congruences, i.e., find an eigenform of parallel weight $N+2$ (to be specified) and level $\Gamma \cap \Gamma_{1}(p)$ which is congruent mod p to f and which can be lifted to a characteristic zero eigenform when N is sufficiently large (the ampleness of a line bundle over $\left.X_{\Gamma \cap \Gamma_{1}(p)}\right)$.
The ' +2 ' in weight comes from a dualising/regular differential sheaf and ' $+N$ ' is a piece of apparatus needed for lifting forms of weight that is not regular and not paritious.

Preliminary reduction steps

- 「 may be taken to be a principal congruence subgroup of level prime to p,
- by twisting if necessary, WLOG $\ell_{\tau}=-1$ for every τ in $\imath \circ \Sigma$,
- (can always) find $N \in \mathbb{Z}$ and $r \in \mathbb{Z}^{20 \Sigma}$ such that $0 \leq r_{\tau} \leq p-1$ but not all r_{τ} are simultaneously $p-1$ such that $k-(N+2-r)$ is a linear combination of h_{τ} 's. Multiplying H_{τ} 's defines an injection of global sections $\rightsquigarrow k=N+2-r$.
[- the Katz-Mazur-Pappas covering

$$
\pi: Y_{\left\ulcorner\cap \Gamma_{1}(p)\right.} \rightarrow Y_{\Gamma}
$$

with extension

$$
\pi: X_{\Gamma \cap \Gamma_{1}(p)} \rightarrow X_{\Gamma}
$$

to minimal compactifications]

- observe that there is a Hecke equivariant injection

$$
H^{0}\left(\bar{Y}_{\Gamma, \mathscr{A}}^{(k,-1)}, \hookrightarrow H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, \mathscr{A}_{(N+2,-1)}\right)\right.
$$

with its image contained in

$$
\begin{array}{r}
H^{0}\left(\bar{X}_{\Gamma \cap \Gamma_{1}(p)}, \overline{\iota_{*} K} \otimes_{\mathscr{Q}_{\bar{x}_{\Gamma \cap \Gamma_{1}(p)}}} \bar{\omega}^{N}\right) \subset H^{0}\left(\bar{X}_{\Gamma \cap \Gamma_{1}(p)}, \bar{\iota}_{*} K \otimes_{\mathscr{U}_{\bar{x}_{\Gamma \cap \Gamma_{1}(p)}}} \bar{\omega}^{N}\right) \\
H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, \mathscr{A}_{(N+2,-1)}\right)
\end{array}
$$

where
$-\iota: Y_{\Gamma \cap \Gamma_{1}(p)} \hookrightarrow X_{\Gamma \cap \Gamma_{1}(p)}$,

- K denotes the dualising sheaf over the Cohen-Macaulay scheme $Y_{\left\ulcorner\cap \Gamma_{1}(p)\right.}$,
- and $\omega=\mathscr{A}_{(1,0)}$ is the ample line bundle $\pi^{*}\left(\bigotimes_{\tau} \omega X_{\Gamma}, \tau\right)$.

Interlude: where does this injection come from? There is a component

which may be described in terms of Raynaud bundles:
$\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}^{R}=\underline{\operatorname{Spec}}\left(\operatorname{Sym}_{\mathscr{O}_{\bar{Y}_{\Gamma}}}\left(\bigoplus_{\tau \in \jmath \circ \Sigma} \bar{\omega}_{\tau}\right) /\left\langle\left\{\bar{\omega}_{\tau}^{p}\right\}_{\tau \in \jmath \circ}, \otimes_{\tau} \bar{\omega}_{\tau}^{p-1}\right\rangle\right)$.
The push-forward is a union of automorphic bundles over \bar{Y}_{Γ} :

$$
(\pi \circ \gamma)_{*} \mathscr{O}_{\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}^{R}} \simeq \bigoplus_{r} \mathscr{A}_{(r, 0)}
$$

where r ranges over $\mathbb{Z}^{\imath 0 \Sigma}$ such that $0 \leq r_{\tau} \leq p-1$ but the r_{τ} are not simultaneously $p-1$.

Theorem (DKS)

$$
R^{r} \pi_{*} K=0
$$

for $r>0$.

- the theorem implies $R^{1} \pi_{*}\left(\iota_{*} K\right)=0$, hence $\pi_{*}\left(\iota_{*} K\right) \rightarrow \pi_{*}\left(\overline{\iota_{*} K}\right)$ is surjective and, combined with the ampleness of ω, it follows that

$$
\left.\begin{array}{rl}
H^{0}\left(X_{\Gamma}, \pi_{*} \iota_{*} K\right. & \left.\otimes_{\mathscr{O}_{X_{\Gamma}}} \omega^{N}\right)
\end{array}\right] \quad H^{0}\left(X_{\Gamma}, \pi_{*}\left(\overline{\iota_{*} K}\right) \otimes_{\mathscr{O}_{\Gamma}} \bar{\omega}^{N}\right) .
$$

is surjective when N is sufficiently large, because

$$
H^{1}\left(X_{\Gamma}, \pi_{*} \iota_{*} K \otimes_{\mathscr{O}_{X_{\Gamma}}} \omega^{N}\right)=0
$$

- there exists a Galois representation associated to an eigenform in $H^{0}\left(X_{\Gamma \cap \Gamma_{1}(p)}, \mathscr{A}_{(N+2,-1)}\right)[1 / p]$ by work of Carayol, Taylor, \ldots.

The folklore conjecture

Conjecture (DS)

Every irreducible, continuous, totally odd representation

$$
\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

is modular (of some weight) in our sense.
How can we make this statement, i.e., the weight part, more precise? We will do this in terms of the behaviour of $\bar{\rho}_{p}=\left.\bar{\rho}\right|_{D_{p}}$.

In preparation for formulating the DS conjecture (the DK cone)

Definition (Diamond-Kassaei cones)
Let

$$
\equiv=\left\{k=\sum_{\tau \in \imath \circ \Sigma} k_{\tau} \tau \mid p k_{\tau} \geq k_{\phi^{-1} \circ \tau}\right\} \subset \mathbb{Z}^{2 \circ \Sigma}
$$

and

$$
\bar{\Xi}^{+}=\left\{k \in \equiv \mid k_{\tau} \geq 1\right\}
$$

Define

$$
k \succeq k^{\prime}
$$

if $k-k^{\prime}$ is a non-negative linear combination of the weights h_{τ} of the partial Hasse invariants.

Conjecture

Conjecture (DS)

Let

$$
\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{\rho}\right),
$$

totally odd, continuous, irreducible.
 following conditions:

- $\bar{\rho}$ is modular of weight (k, ℓ) if and only if $k \succeq k(\bar{\rho}, \ell)$
- if $k \in \Xi^{+}$, then $k \succeq k(\bar{\rho}, \ell)$ if and only if $\left.\bar{\rho}\right|_{\text {Gal }\left(\overline{\mathbb{Q}}_{p} / F_{p}\right)}$ has a crystalline lift of weight (k, ℓ), i.e. of Hodge-Tate weight $(k+\ell-1, \ell)$.

Remark

Assuming $\bar{\rho}$ is (geometrically) modular, the existence of $k(\bar{\rho}, \ell)$ is suggested by DK- the weight filtration $w(f)$ of a $\bmod p$ HMF f lies in \equiv (as explined in Payman's talk).

The first condition: 'minimality'

Assuming the existence of $k(\bar{\rho}, \ell) \in \Xi^{+}$satisfying the first condition, one sees that

- the conjecture implies the folklore conjecture earlier,
- the conjecture (i.e. the second condition) boils down to Conjecture (DS)
If $k \in \Xi^{+}$, then $\bar{\rho}$ is modular of weight (k, ℓ) if and only if $\bar{\rho}_{p}$ has crystalline lift of weight (k, ℓ).

The second condition: p-adic Hodge-theory

The second condition is suggested by the Breuil-Mézard conjecture and modular representation theory of $G\left(\mathbb{F}_{p}\right)$ - it is the underlying theme of DKS.

The qualification ' $k \in \Xi^{+}$' in the second condition is needed- if $k \notin \bar{\Xi}^{+}$, the condition $k \succeq k(\bar{\rho}, \ell)$ does not imply that $\bar{\rho}_{p}$ has crystalline lift of weight (k, ℓ).

Algebraic modularity $=$ geometric modularity

Conjecture (DS)
Let $(k, \ell) \in \mathbb{Z}^{20 \Sigma} \times \mathbb{Z}^{20 \Sigma}$ and $k_{\tau} \geq 2$ for every τ in $\imath \circ \Sigma$. If $\bar{\rho}$ is algebraic modular of weight (k, ℓ), i.e., of weight

$$
V_{k, 1-k-\ell}=\bigotimes_{\tau} \operatorname{det}^{1-k_{\tau}-\ell_{\tau}} \operatorname{Sym}^{k_{\tau}-2}\left(V_{s t} \otimes_{\tau} \overline{\mathbb{F}}_{p}\right),
$$

then $\bar{\rho}$ is modular of weight (k, ℓ).
Furthermore, if $k \in \Xi^{+}$, the converse holds.

Remarks

We know that if $\bar{\rho}$ is algebraic modular of paritious weight (k, ℓ), then $\bar{\rho}$ is modular of weight (k, ℓ).
By our construction of modular Galois representations, if $\bar{\rho}$ is modular of some weight, $\bar{\rho}$ is algebraic modular of some weight.

The DKS paper was motivated by this conjecture.

Example 1: $F=\mathbb{Q}$ and $\ell=0$

$$
\begin{gathered}
\Xi^{+}=\{k \geq 1\}, \\
k \succeq k^{\prime} \text { if } k-k^{\prime}=(p-1) v
\end{gathered}
$$

for a non-negative integer v.
There exists $k(\bar{\rho}) \geq 1$ such that the following are equivalent: for every $k \geq 1$,

- $\bar{\rho}$ is modular of weight k,
- $k \succeq k(\bar{\rho})$,
- $\bar{\rho}_{p}$ has a crystalline lift of weight $(k-1,0)$,
$\rightsquigarrow k(\bar{\rho})$ is the smallest possible weight for which $\bar{\rho}$ is modular (see Hanneke's talk).

Example 2: $[F: \mathbb{Q}]=2$ and $\ell=0$

Fix τ in $\imath \circ \Sigma$. Let

$$
\imath \circ \Sigma=\left\{\tau, \Phi \circ \tau=\Phi^{-1} \circ \tau\right\}
$$

Theorem (DS)
Let $2 \leq r \leq p$ and suppose that r is odd. Suppose that $\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ is irreducible and modular.

If $\bar{\rho}_{p}$ has crystalline lift of weight

$$
((r, 1),(0,0))
$$

$(=\mathrm{HT}$ weight $((r-1,0),(0,0)))$ then $\bar{\rho}$ is modular of weight

$$
((r, 1),(0,0))
$$

[τ-labelled weights are always 'on the left']

Proof (Sketch)

For brevity, we only sketch out proof when $2<r$; the case $r=2$ is similar. We furthermore assume that $\bar{\rho}$ is of Taylor-Wiles type-the exceptional case can be dealt with by an ad hoc argument.

Step 1

Given that $\bar{\rho}_{p}$ has crystalline lift of weight

$$
((r, 1),(0,0))
$$

we deduce from p-adic Hodge theory that $\bar{\rho}_{p}$ also has crystalline lifts of weight

$$
(k, \ell)=((r-1, p+1),(0,0))
$$

and

$$
\left(k^{\prime}, \ell^{\prime}\right)=((r+1, p+1),(-1,0)) .
$$

' p-adic Hodge theory'?

For example, suppose $\bar{\rho}_{p}$ is reducible and is of the form $\left(\begin{array}{cc}\bar{\chi}_{1} & * \\ 0 & \bar{\chi}_{2}\end{array}\right)$ where

- $\bar{\chi}_{1} \mid ⿰=1$ (i.e. unramified),
- $\left.\bar{\chi}_{2}\right|_{I}=\lambda_{\tau}^{1-r}$, where λ_{τ} denotes the τ-fundamental character,
- $\bar{\chi}=\bar{\chi}_{1} / \bar{\chi}_{2}$ has a crystalline lift $\chi=\chi_{(1-r, 0)}$ of Hodge-Tate type ($1-r, 0$) and $\overline{\mathrm{BK}}_{\chi}$ contains *, where

$$
\begin{array}{ccccc}
H^{1}\left(F_{p}, \overline{\mathbb{Q}}_{p}(\chi)\right) & \leftarrow & H^{1}\left(F_{p}, \overline{\mathbb{Z}}_{p}(\chi)\right) & \rightarrow & H^{1}\left(F_{p}, \overline{\mathbb{F}}_{p}(\chi)\right) \\
H_{\mathrm{BK}}^{1}\left(F_{p}, \overline{\mathbb{Q}}_{p}(\chi)\right) & \leftarrow & \mathrm{BK}_{\chi} & \rightarrow & \stackrel{\cup}{\mathrm{BK}_{\chi}}
\end{array}
$$

Then it follows from

$$
\lambda_{\tau}^{r-1}=\lambda_{\tau}^{r-2} \lambda_{\oplus \circ \tau}^{p}
$$

and

$$
\lambda_{\tau}^{r-1}=\lambda_{\tau}^{r} \lambda_{\Phi \circ \tau}^{-p}
$$

that $\bar{\chi}$ has crystalline lifts $\chi_{(2-r,-p)}$ and $\chi_{(-r, p)}$ of Hodge-Tate type

$$
(2-r,-p)
$$

and

$$
(-r, p)
$$

respectively, and one can check in both cases that

$$
* \in \overline{\mathrm{BK}}_{\chi_{(2-r,-p)}}=H^{1}\left(F_{p}, \overline{\mathbb{F}}_{p}\left(\chi_{(2-r,-p)}\right)\right)
$$

and

$$
* \in \overline{\mathrm{BK}}_{\chi_{(-r, p)}}=\overline{\mathrm{BK}}_{\chi} .
$$

Step 2: algebraic companion forms

By work of Gee and his collaborators on the BDJ conjecture that $\bar{\rho}$ is algebraic modular of weight $(k, \ell)\left(=\right.$ Serre weight $\left.V_{k, 1-k-\ell}\right)$ and ($k^{\prime}, \ell^{\prime}$).

Step 3: geometric companion forms

Since r and 1 are paritious, $\bar{\rho}$ is geometric modular of weight (k, ℓ) and ($k^{\prime}, \ell^{\prime}$).

Step 4: combinatorics

Let f (resp. f^{\prime}) be a geometric HMF of weight (k, ℓ) (resp.
($\left.k^{\prime}, \ell^{\prime}\right)$) such that $\bar{\rho}_{f} \simeq \bar{\rho}$ (resp. $\bar{\rho} \simeq \bar{\rho}_{f^{\prime}}$). One observes

- $\theta_{\tau}(f)$ is of weight

$$
((r-1, p+1),(0,0))+((1, p),(-1,0))=((r, 2 p+1),(-1,0))
$$

- $f^{\prime} H_{\tau}$ is an eigenform of weight

$$
((r+1, p+1),(-1,0))+((-1, p),(0,0))=((r, 2 p+1),(-1,0))
$$

- $\theta_{\tau}(f)=f^{\prime} H_{\tau}$.

θ-operators/cycles

Theorem (AG)
For any HMF f of weight (k, ℓ), the image $\theta_{\tau}(f)$ is divisible by H_{τ} if and only if f is divisible by H_{τ} or p divides k_{τ}.

Step 5: a mod p HMF of partial weight one

Deduce from the theorem that f is divisible by H_{τ}. The HMF f / H_{τ} of weight

$$
((r-1, p+1),(0,0))-((-1, p),(0,0))=((r, 1),(0,0))
$$

is what we are looking for.

