
Hida-Coleman theory (Draft 29/09/15)

Shu Sasaki

1 Introduction

I’ve been asked to give a series of lectures on Hida-Coleman theory of p-adic modular forms. Here are
my notes.

To that end, I should like to list my references: Hida’s ‘Elementary theory of L-functions and Eis-
enstein series’ (CUP) and ‘On p-adic Hecke algebras over totally real fields’ (Annals); Coleman’s ‘p-adic
Banach spaces and families of modular forms’ (Inventiones) and ‘Classical and overconvergent modular
forms’ (Inventiones).

I was encouraged not to talk about Galois representations, but they are, really, inseparable (to say
the least) for the development of theory of p-adic modular forms. If you are interested, the following
list might be useful and accessible: Hida’s ‘Galois representations into GL2(Zp[[X]]) attached to ordin-
ary cusp forms’ (Inventiones) and ‘Nearly ordinary Hecke algebras and Galois representations of several
variables’ (Proceedings to a JAMI conference); Mazur-Wiles ‘On p-adic analytic families of Galois rep-
resentations’ (Compositio). A proper reference for p-adic geometry would be BGR ‘Non-archimedean
analysis’, but Schneider’s notes ‘Basic notions of rigid analytic geometry’ might just teach you enough
to understand, at least, claims I shall be making.

I learned almost everything in here by listening to my advisor Kevin Buzzard. Anything he’s ever
written about p-adic modular forms is careful and informative, so I suggest you study them if you come
across.

2 A completely unnecessary but maybe useful remarks for ped-
ants?

For an element γ of GL+
2 (R), define ‘f |kγ’ to be (det γ)(cz + d)−kf(γz). The power ‘1’ of det matters

significantly in considering modular forms of levels defined by open compact subs of GL2, rather than
of classical SL2. Often Shimura, and Hida’s ‘Iwasawa modules...’ and ‘Galois representations...’ papers,
choose it to be k/2 for making automorphic representations ‘unitarizable’. On the other hand, Hida’s
other papers, and Buzzard-Taylor for example, essentially choose it to be 1. This difference is apparent in
how one normalises a ‘Λ-algebra structure’ and, as a result, in ‘specialisations’ of weight characters. More
precisely, it is defined by |kγ ‘augmented’ by the k-th power of γp for γ = γpγN ∈ Z×p × (Z/NZ)× in the

former (See Hida’s ‘Galois representations...’ p.549), while via the diamond operator 〈γ〉 = χ2−k(γ)(|kγ)
in the latter. I’ve never got my head around Wiles’ ‘On ordinary...’ paper, where he follows Shimura to
choose k/2 but specialisation is k − 2-power... perhaps it is how Λ→ T o(N ;O) is normalised?

3 Hida theory

Let k ≥ 1 and M ≥ 1 be integers. Let Sk(Γ1(M);C) denote the finite-dimensional C-vector space of
cusp forms of weight k and level Γ1(M).

For a modular form f , let a(ν, f) denote the Fourier coefficients.
For every Z-algebra O in C, let Sk(Γ1(M);O) denote the sub of f in Sk(Γ1(M);C) such that a(ν, f) ∈

O.
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It is well-known:
Sk(Γ1(M);O)⊗O C ' Sk(Γ1(M);C).

If O is a Z-algebra but not necessarily in C, define Sk(Γ1(M);O) to be Sk(Γ1(M); Z)⊗Z O.

Oecall that Sk(Γ1(M);C) comes equipped with action of (Z/MZ)× by the diamond operator 〈 〉, TV
(resp. UV ) for a prime V not dividing (resp. dividing) M . Also SV = V k−2〈V 〉 for every prime V not
dividing M .

For every integer N ≥ 1, we define T (N), or TN by: T (RS) = T (R)T (S) for coprime integers R,S,∑∞
ρ=0 T (V ρ)Xρ = (1− T (V )X + V SVX

2)−1 for V not dividing M ; and T (V ρ) = UρV for V dividing M .

A classical result:

Lemma 1 For f in Sk(Γ1(M);C),
a(1, f |TN ) = a(N, f)

Proof. Hida Corollary 4.2. �

Let Tk(M ; Z) denote the subalgebra of EndC(Sk(Γ1(M);C)) generated over Q by the TN ’s. For any
Z-algebra O, let Tk(M ;O) = Tk(M ; Z)⊗Z O.

Lemma 2 Tk(M ;O) is a flat module O of fine type (i.e. finitely generated over O). If O is finite flat
over Zp, it is finite free.

Proof. The first assertion is Hida’s Theorem 3.1. The second assertion is simply a commutative
algebra exercise (Matsumura Theorem 7.10). �

Theorem 3 For every sub Z-algebra O in C, Sk(Γ1(M);O) is stable under TN for every N , hence stable
under Tk(M ;O). As a result, the same assertion holds for O not necessarily in C, and Tk(M ;O) acts
on Sk(Γ1(M);O).

Proof. It might be surprising that algebraic geometry is necessary to define ‘integral structure’ of
modular forms. For f in Sk(Γ1(M), O), Shimura/Hida’s formula asserts

a(`, f |TN ) =
∑
|Z/V Z|a((`/V )(N/V ), f |SV )

the sum ranges over V satisfying V |`, V |N , and V coprime to M . Hence it suffices to check that
|Z/V Z|SV acts on Sk(Γ1(M);O). To check this, as Sk(Γ1(M);O) = H0(XO, ω

⊗k−2 ⊗ Ω1), one calcu-
lates q-expansion coefficients of |Z/V Z|SV (which needs to be interpreted in terms of moduli) at Tate
curves, and ascertain they are defined over O. �

Define a pairing
〈 , 〉 : Tk(M ;O)× Sk(Γ1(M);O) −→ O

by 〈T, f〉 = a(1, f |T ).
By definition, 〈TS, f〉 = 〈S, f |T 〉 and one can deduce Tk(M,O) is a commutative algebra with identity

T (1); and 〈TN , f〉 = a(N, f).

Corollary 4 If O is flat over Z, then

HomO(Tk(M ;O), O) ' Sk(Γ1(M);O)

HomO(Sk(Γ1(M);O), O) ' Tk(M ;O).

Note that, by ‘HomO’ I mean O-linear homomorphisms, and no more.

Proof. Firstly, suppose that O is a field L. As Sk(Γ1(M);L) and Tk(M ;L) is finite-dimensional over
L, it suffices to check that the pairing is non-degenerate. Suppose 〈T, f) = 0 for every T . Then the
lemma shows that a(N, f) = a(1, f |TN ) = 〈TN , f〉 = 0, and therefore f = 0.
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On the other hand, suppose that 〈T, f〉 = 0 for every f . Then a(N, f |T ) = a(1, f |TTN ) = a(1, f |TNT ) =
〈T, f |TN 〉 = 0 hence T = 0 as an operator.

Suppose that O is no longer a field. Since Sk(Γ1(M);O) =
⋂
V Sk(Γ1(M);OV ) for localisations OV ,

we may assume that O is a local valuation ring with field of fractions L.
To prove HomO(Tk(M ;O), O) ' Sk(Γ1(M);O) for example, observe that, since Tk(M ;O) is finite

over O, Tk(M ;O)⊗O L is a subalgebra of Tk(M ;L), hence any λ in HomO(Tk(M ;O), O) extends to a L-
linear map Tk(M ;L)→ L. By the duality over L, there exists f in Sk(Γ1(M);L) such that λ(T ) = 〈T, f〉
for every T . It therefore follows that, for every N , a(N, f) = a(1, f |TN ) = 〈TN , f〉 = λ(TN ) ∈ O since
TN ∈ Tk(M ;O). Hence f lies in Sk(Γ1(M);O) indeed. �

Suppose that f is a non-trivial eigenform, i.e., f |TN = λNf for some λ ∈ C, for every N ≥ 1. Then
the map sending TN to λN defines a C-algebra map Tk(M ;C)→ C.

Observe that λN 〈T (1), f〉 = 〈T (1), f |TN 〉 = 〈TN , f〉 = a(N, f). So, as f is non-trivial, 〈T (1), f〉 is
non-zero. And it makes sense to consider f/〈T (1), f〉 instead, and λN = a(N, f) now holds for this new
f . When λN = a(N, f) holds, we call f a normalised eigenform.

Theorem 5 Alg-HomO(Tk(M ;O), L) is isomorphic to the subspace of Sk(Γ1(M);C) of normalised ei-
genforms.

Algebra O-homomorphisms are additionally ‘multiplicative’.

M will be Npν where N is prime to p from now on. Suppose that p ≥ 5. Suppose that O is finite
flat over O.

Definition. As ν ranges over integers ≥ 1, Tk(Npν ;O) form an inverse system, and let Tk(Np∞;O)
denote the limit. On the other hand, Sk(Npν ;O) form a direct system, and let Sk(Np∞;O) denote the
limit.

The diamond operator gives rise to

〈 〉 : (Z/NpνZ)× −→ Tk(Npν ;O)

which, in turn, gives rise to
(Z/NZ)× × Z×p −→ Tk(Np∞;O).

Note that (Z/NpνZ)× is nothing other than the (classical) ideal class group mod Npν∞. Observe
that Z×p ' (Z/pZ)× × (1 + pZp)

×. The latter (1 + pZp)
× is topologically generated by u = 1 + p for

example, and the completed group algebra Λ = Zp[(1 + pZp)
×] is isomorphic:

Λ ' Zp[[ξ]]

by sending u to 1 + ξ.
Geometrically,W = Sp (Z/NZ)××Z×p , often called the weight space, is a disjoint union of |(Z/pNZ)×|-

copies of the ‘ball’ Sp Λ. Perhaps easier to fathom the idea by looking at Qp-points: the Qp-points of

W corresponds to the characters χ : (Z/NZ)× × Z×p ' (Z/NpZ)× × (1 + pZ×p )× → Qp; and each
ball/component is indexed by its restriction to (Z/NpZ)×, i.e., every pair of characters in the same
component define the same character of (Z/NpZ)×.

One can define a norm | | on Sk(Np∞;O) by |f | = supN |a(N, f)|, and let S∧k (Np∞;O) denote the
completion with respect to this norm. When p inverted, this defines a Banach space and its elements
are often called (holomorphic) p-adic cusp forms. Good references for theory of p-adic modular forms
are Katz ‘Higher congruences between modular forms’ and Gouvea’s thesis.

Theorem 6 For every Zp-algebra O, there is a natural isomorphism as O ⊗Zp Zp[(Z/NpZ)×]-algebras

Tk(Np∞, O) ' T2(Np∞;O)

sending TN to TN , for every k ≥ 2. Similarly for S∧k (Np∞;O).
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Proof. Hard. �

Given this ‘weight-independence’ result, we shall call it T (N ;O) from now on. This is the (p-adic)
Hecke algebra of p-adic modular forms (of tame level N).

For record:

Proposition 7 The pairing 〈 , 〉 : Tk(Np∞;O)×S∧k (Np∞;O)→ O, defined exactly the same as before,
defines

HomO(Tk(Np∞;O), O) ' S∧k (Γ1(Np∞);O)

HomO(S∧k (Γ1(Np∞);O), O) ' Tk(Np∞;O).

Define T o(N ;O) to the maximal direct summand of T (N ;O) on which Tp is invertible. This is what
people call the Hida ordinary Hecke algebra (of tame level N). To define this, we firstly define the ‘Hida
idempotent’ e on Tk(Npν ;O) as follows: since T = Tk(Npν ;O) is a flat O-module of finite type over O
(Hida Theorem 3.1), it is a p-adically complete semi-local ring, and is a direct sum

T =
⊕
m

Tm

of localised T at maximal ideals. W then write eT for the direct sum of all Tm with m ranging over all
maximal ideals not containing T (p). We define T o(N ;O) to be the inverse limit of eTk(Npν ;O) for any
k ≥ 2.

Theorem 8 T o(N ;O) is torsion-free, and of finite-type as a Λ-module.

Theorem 9 T o(N ;O) is free of finite rank over Λ.

Proposition 10 Alg-HomO(T o
k (Npν ;O),Qp) equals the set of normalised eigenform f in Sk(Npν ;O)

such that its slope val(a(p, f)) is 0, where val denote the normalised valuation on Qp such that val(p) = 1.

f as in the proposition above is called a (Hida) ordinary form.

Suppose that O contains a pν-power roos of unity ζ. Let k ≥ 2 be an integer.
A character χ of Zp[(1 + pZp)

×] → O is determined by where u is sent to, and define it to be
(1 + p)k−2ζ. Then:

Theorem 11 T o(N ;O)/kerχ = T o(N ;O)/(u − (1 + p)k−2ζ) is isomorphic to the maximal quotient of
T o
k (Npν+1;O) acting on the subspace of Sk(Γ1(Npν+1);O) with Dirichlet characters of (Z/Npν+1Z)×,

when restricted to (Z/pνZ)× ' (1 + pZp)
×/(1 + pνZp)

×, equals χ.

By the duality theorems mentioned, this theorem asserts that a ordinary p-adic modular eigenform of
weight k ≥ 2 is a cusp modular eigenform. We shall see in Coleman-theory a result, an overconvergent
p-adic modular eigenform of slope < k − 1 is classical, that is a generalisation of this result.

Let K denote the field of fractions of Λ, and K denote its algebraic closure.
A Λ-algebra homomorphism

F : T o(N ;O) −→ K

is often called a Λ-adic form. Observe that, there is an extension K ⊂ L ⊂ K through which F factors.

Consider SpecL. Its Qp-points correspond to Alg-Hom(L,Qp), and we call a point P of (SpecL)(Qp)

arithmetic if its restriction to Λ maps u to (1+p)k−2ζ for an integer k ≥ 2 and for some p-power root ζ. In
which case, the specialisation FP = P ◦F : T o(N ;O)→ Qp factors through T o(N ;O)/(u− (1 +p)k−2ζ),

and therefore defines a cusp eigenform
∑∞
N=1 F(TN )(P )qN ∈ Sk(Γ1(Npν+1); Qp). In some sense F is a

one-parameter family in L[[q]] of ordinary cusp forms.

If I have time, explain concrete examples of Hida families from Kev’s notes ‘Examples of Hida families’.
Hopefully freely available.
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4 Quick recap about p-adic geometry

Let O be a complete, non-archimedean, valuation ring, with its field of fractions L. Let π be a uniformiser.

Suppose that K is an affinoid L-algebra. Define semi-norm, called the supremum semi-norm, | | on
X = SpK = MaxK by |f | = supξ∈X |f(ξ)| (note that ξ corresponds to a maximal ideal of K and K/ξ
is a finite extension of L, and |f(ξ)| denote the norm of the image of f in K/ξ).

R = {f ∈ K | |f | ≤ 1} ⊃ S = {f ∈ K | |f | < 1}

and R = R/S. For example, if K = L〈X1, . . . , XN 〉 the Tate algebra, R = O〈X1, . . . , XN 〉, which is
the π-adic completion of O[X1, . . . , XN ] whose elements are of the form

∑
λ1,...,λN

cλ1,...,λN
Xλ1

1 · · ·X
λN

N ,

where cλ1,...,λN
∈ O such that |cλ1,...,λN

| → 0 as λ1 + · · ·+ λN →∞, and R = k[X1, . . . , XN ].

One can show that
• R is a model of K, i.e., R⊗O L ' K;
• R is π-adically complete;
• R is topologically of finite type over O, i.e., ' O〈X1, . . . , XN 〉/I for some ideal I;
• R is O-flat;
• R is finite type k-algebra.

So it makes sense to define:

Definition. An O-algebra R is admissible if it is π-adically complete, flat over O, and topologically
of finite type.

Definition. A formal scheme X over O s admissible if it is locally Spf R for an admissible O-algebra
R.

Definition. sp : X = Spf R → X = SpecR given by sending I to (I ∩ R)/(I ∩M). It surjects onto
the closed points of X . This ‘globalises’.

Definition. For an admissible formal scheme X over O, its admissible formal blow-up along I is:

BLX = lim
N

Pr

∞⊕
λ=0

(Iλ ⊗OX OX /πN ) −→ X

Given affine admissible formal scheme X = Spf R over O, X a = SpR ⊗O L defines a rigid ana-
lytic space, because R ⊗O L is an affinoid L-algebra. For example, if R ' O〈X1, . . . , XN 〉/I, then
R ⊗O L ' L〈X1, . . . , XN 〉/I. This ‘functor’ X 7→ X a ‘globalises’ (call the latter the Raynaud generic
fibre of X ), and gives the equivalence of categories between

• the category of quasi-compact, admissible formal schemes over O, localised by admissible formal
blow-ups;
• the category of quasi-compact (i.e admits a finite admissible affinoid covering), quasi-separated (i.e.,

the diagonal morphism ∆ : X a → X a ×L X a is a quasi-compact morphism; See Bosch’s lecture notes
1.16, Proposition 4 that the Berthelot’s definition that the intersection of two affonoids is an affinoid is
weaker), rigid analytic spaces over L.

In particular, BLX → X gives rise to an isomorphism of rigid spaces (BLX )a ' X a.

5 Coleman theorey

Let Y denote Γ1(N)\H = GL2(Q)\GL2(A)/R×+SO2(R), and let X denote the Borel-Serre compactific-
ation over C.
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Let ω⊗k denote the cotangent bundle

Γ1(N)\(H× C) −→ Γ1(N)\H = Y

where γ in Γ1(N) acts via γ(z, ξ) = ((az + b)/(cz + d), (cz + d)kξ). Borel-Serre theory establishes that
ω⊗k extends to X. Parenthetically, the standard representation C2 corresponds to the relative de Rham
cohomology sheaf over Y , which extends over X.

It is a standard exercise to check

H0(X,ω⊗k) 'Mk(Γ1(N);C)

and
H0(X,ω⊗k−2 ⊗ Ω1) ' Sk(Γ1(N);C).

One can see Y as a moduli space of the set of isomorphism classes of elliptic curves C/〈Z + Zτ〉 with
level structure 1/N .

The Tate curve G/qZ over Z((q)) defines

Spec Z((q))→ Y

corresponding to (G/qZ, µN ↪→ G) extends to

Spec Z[[q]]→ X

and the pul-back of f ∈ H0(X,ω⊗k) to Z[[q]] define the q-expansion of f .

One may define Hecke operators TQ/UQ via degeneracy maps

π1, π2 : XI −→ X

for the Iwahori subgroup I at Q, and a map of morphisms π∗2F → π∗1F , which gives rise to π1∗π
∗
2F →

π1∗π
∗
1F → F by pre-composing with the trace map, and taking sections over X, we have

TQ/UQ : H0(X,F) −→ H0(X,F)

for F = ω⊗k.

From the ‘moduli -theoretic’ viewpoint, these can be sees as:

f |(TQ/UQ)(E,P ) = 1/p
∑

f(E/D, (P +D)/D)

where the sum ranges over the p + 1 finite flat subgroup schemes D of E[p] of order p, while it ranges
over all such D’s which has only trivial intersection with the subgroup generated by P .

We would like to do this over the maximal unramified extension L = W (Fp)[1/p] of Qp. Let O denote
W (Fp).

X/C has an integral model X over Z[1/N ]; it is smooth and geometrically irreducible such that

X ×Z[1/N ] C ' X.

Let XO denote X ×Z[1/N ]O. DRAW picture of the Raynaud generic fibre XO[1/p] (this is isomorphic
to the rigid analytic space of the Zariski generic fibre in the sense of Tate by the properness of XO):

Raynaud also defines a map of sites: sp : XO[1/p] → XO := XO ×O Fp. It is a result of Igusa that
there are only finitely many supersingular points in XO. We know that the completed local ring

O∧XO,ν ' O[[ξν ]]

for a supper-singular point ν in XO for a choice of parameter ξν . The Raynaud generic fibre of O∧XO,ν
is

nothing other than sp−1(ν), and ξν define a local coordinate of points in the generic fine which specialise
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to ν in the fibre.

Let r ∈ pQ such that 1/p = p−1 < r ≤ 1 = p0. For every supsersingular point ν in XO, let

sp−1(ν)<r

denote the admissible open subset of points P in sp−1(ν) such that (1/p <)|ξ(P )| < r; and define

XO[1/p]≥r = XO[1/p]−
⋃
ν

sp−1(ν)<r.

Define an element of H0(XO[1/p]≥r, ω
⊗k) to be an r-overconvergent modular form of weight k and

level Γ1(N) (defined over L = O[1/p]). An overconvergent modular form is a r-overconvergent modular
form for some r < 1. When r = 1, the sections are called convergent modular forms ‘of level prime to p’
and are related to ‘Katz p-adic modular forms’.

There are degeneracy morphisms

πν : Xν,O −→ Xν−1,O −→ · · · −→ X1,O −→ XI,O −→ XO

where Xt dente the O-module of the compactified modular curve of level Γ1(Npt), XI,O is of Iwahori
level, and the map Xt,O → XI,O is defined by sending (E,P ) (where P is a ‘point’ of E order pt) to
(E/〈pP 〉, 〈P/pP 〉). The premise by πν of XO[1/p]≥r has two components, and define Xν,O[1/p]≥r to be
the one which contains the cusp ∞ (i.e. containing th multiplicative ordinary locus).

For a supersingualr point ν of X I,O, O∧XI,O,ν
' O[[ξ, ξ∨]]/(ξξ∨ − p), and its Raynaud generic fibre,

sp−1(ν), is an annuli SpL〈ξ, p/ξ∨〉 = SpL〈ξ, ξ∨〉/(ξξ∨−p) whose L-points is {z ∈ L | 1/p = |p| ≤ |z| ≤ 1}.
ELABORATE! DRAW A PICTURE

An overconvergent modular form of weight k and level Γ1(Npν) is an element ofH0(Xν,O[1/p]≥r, ω
⊗k).

Remark. There is an entirely different way of defining ‘overconvergent at Iwahori level’ using Oort-
Tate/Raynaud classification of finite flat group schemes. This is more natural.

A non-cuspidal point ξ of XI,O[1/p] correspond to an (isomorphism class of) elliptic curve E which
comes equipped with a finite flat (isotropic, i.e., the Weil paring E[p] ' E[p]∨ sends C isomorphically
to (E[p]/C)∨) subgroup scheme C ⊂ E[p] of order p over the ring R of integers of a finite extension
of L. Oort-Tate carefully studies such C, and shows that it is of the form SpecR[t]/(tp − γt) while its
Cartier dual C∨ is of the form SpecR[t∨]/((t∨)p − γ∨t∨) for some γ, γ∨ in R such that γγ∨ = p. Now
define deg(ξ) to be 1− val(γ) = val(γ∨), where val is a normalised valuation such that val(p) = 1. The
degree tells us deg(ξ) = 0 (resp. = 1) if and only if C is multiplicative (resp. étale) and E reduces to an
ordinary elliptic curve in characteristic p; and 0 < deg(C) < 1 if and only if E reduces to a supersingular
elliptic curve. A remarkable observation one can make is, knowing deg, one more or less knows p-adic
geometry of modular curves (well, at least for applications people in the trade have in mind).

Proposition 12 A classical modular form is overconvergent.

Proof. This follows by definition. �

The converse, however, does not necessarily hold. However, arguably one of the most important
results in p-adic theory of modular form is:

Theorem 13 Let f be an overconvergent modular form of weight k ≥ 2 and of level Γ1(Npν). Suppose
that Upf = λf and λ is a non-zero element of L. If val(λ) < k − 1, then f is classical.

This is a really hard theorem. It is perhaps difficult to pin down a criterion for ‘being classical’ when
k = 1 without reference to its associated Galois representation (which exists).
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It is a result of Kisin and Colmez that the Galois representation ρ = ρf : Gal(Q/Q) → GL2(O)
associated to f as in the theorem is triangulate at p, i.e., its associated (ϕ,Γ)-module is reducible. When
val(λ) = 0, the associated representation ρ is ordinary, i.e., reducible (and has a one-dimensional sub,
or a quotient, that is unramified; this can be arranged by twisting ρ by a character) at p, which is an
old result of Wiles. Note that, in both case, their ‘Fontaine modules’ are reducible. The case for forms
with λ = 0, the infinite slope case is completely mysterious; they correspond to cuspidal automorphic
representations which are supersupidal at p.

Recall that a point ϕ corresponds to a C×p -valued character of Z×p × (Z/NZ)× ' (Z/pNZ)× '
(1 + pZp)

×; if ϕ lies, in particular, in Wχ(Cp), then ϕ, when restricted to (Z/NpZ)×, equals χ.

We shall be interested in characters which lie in B<λ for λ = p1−1/(p−1). Coleman call them accessible
with no motivation whatsoever for the terminology, but my educated guess would be as follows: for
N ∈ B<λ and ξ = [ξ]{ξ} ∈ Z×p ' (Z/pZ)× × (1 + pZp)

×, it makes sense (‘accessible’) to define

{ξ}N := exp(N log{ξ}).

As |N | < λ, |N log{ξ}| = |N ||log(1 + ({ξ} − 1))| < p1−1/(p−1)p−1 = p−1/(p−1) (note that by
definiton, |{ξ}| ≤ p−1 < p−1/(p−1), and hence this is convergent (Recall from p-adic analysis that
expX =

∑∞
N=0X

N/N ! is convergent if |X| < p−1/(p−1) (See Washington p.49) and log(1 + X) =∑∞
N=1(−1)N+1XN/N satisfies |log(1 + X)| ≤ |X| if |X| ≤ p−1/(p−1) (See Washington Lemma 5.5,

p.51)). So accessible characters are characters which sends {ξ} ∈ (1 + pZp)
× to {ξ}N for N ∈ B<λ.

We shall define overconvergent modular forms of level Γ1(Np) and of weight ϕ ∈ Wχ,<λ.

Definition. Define ζ (by slight abuse of notation, but I see no harm doing so) on W as a ‘family’ of
p-adic L-functions defined such that, if ϕ is a (non-trivial) accessible character, i.e., a character which
sends ξ to {ξ}Nχ(ξ) for N in B<λ and χ is a charcter of finite order, then ζ(ϕ) = Lp(1 −N,χ). More
precisely, it is defined (in Lang’s Cyclotomic Fields Chapter 4, Sec. 3. I shall elaborate this a little in
Appendix) to be

ζ(ϕ) = (ϕ(ρ)− 1)−1
∫
Z×p

ϕ(M)M−1 dµ(M)

for any ρ ∈ Z×p such that ϕ(ρ) does not equal 1, in the notation of Lang (in particular, µ = µ1,ρ is a
measure on Z×p defined in Chapter 2; see my Appendix).

Definition. For ϕ in W, let Gϕ = Gϕ(q) = ζ(ϕ)/2 +
∑
N≥1 σϕ(N)qN , where σϕ(N) denotes the

sum, over all integers 0 < M which are coprime to p and which divide N , of ϕ(M)/M .

Proposition 14 Suppose that ϕ is a character of Z×p sending ξ to χ(ξ){ξ}k for k ∈ Z and a character

χ of Z×p of conductor Npλ (where N is prime to p and λ ≥ 0). Then Gϕ is the q-expansion of an

overconvergent modular form of weight k and level Γ1(Npν) where ν = LCM{1, λ} with character χ/[ξ]k

on (Z/NpνZ)×. If k furthermore satisfies ≥ 1, Gϕ is the q-expansion of a classical modular form.

Definition. Let Eϕ = Eϕ(q) = (ζ(ϕ)/2)−1Gϕ. In particular, let E denote Eϕ for the character ϕ
sending ξ to {ξ}; it is overconvergent of weight 1, and of level Γ1(p) with character ξ 7→ [ξ]−1.

Definition. A series F =
∑
N cNq

N ∈ Cp[[q]] is called (the q-expansion of) an overconvergent modu-
lar form of weight ϕ ∈ Wχ,<λ if F/Eϕ is the q-expansion of an overconvergent function in O(X1,O[1/p]≥r)
for p−1/(p+1) < r < 1.

For an admissible open subset U of Wχ,<λ, a formal q-expansion F =
∑
N CNq

N ∈ O(U)[[q]]
is called (the q-expansion of) a family of overconvergent modular form if for any ϕ which lies in
U(Cp), ϕ∗F/Eϕ ∈ Cp[[q]] is the q-expansion of an overconvergent function in O(X1,O[1/p]≥r) for
p−1/(p+1) < r < 1.
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These definitions, however, makes it difficult to define the Up-operator! Suppose that f is an r-
overocnvergent modular form of weight k and level Γ1(Np) for p−1/(p+1) < r < 1, and suppose that it
does not vanish on the domain X1,O[1/p]≥r. Then one can check that U = Up may be defined as

M≥rk (Γ1(Np);O)
f−1

−→ O(X1,O[1/p]≥r)
U◦e−→ O(X1,O[1/p]≥r1/p)↪→O(X1,O[1/p]≥r)

f−→M≥rk (Γ1(Np);O)

where U is the standard ‘Hecke correspondence’ defined by (f |U)(E,P ) = 1/p
∑
f(E/D,P/D) where

the sum ranging over D ⊂ E[p] which intersect only trivially with the subgroup generated by P , and
e = f(q)/f(qp). The following lemma ascertains that there is a substitute ‘in families’ of the function e:

Lemma 15 There exists a rigid analytic function e on
∑
r∈(p−1/(p+1),1] X1,O[1/p]≥r whose q-expansion

is exactly E(q)/E(qp). For any ε ∈ R such that |p| < ε, there exists r ∈ (p−1/(p+1), 1] such that e is
defined on X1,O[1/p]≥r and |e− 1| ≤ ε.

Applying the lemma to N ∈ B<λ and ε = p−1/(p−1), there exists r = rN such that |e − 1| < p−1 <
p−1/(p−1). The importance of these choices is that eN = exp(N log(e)) = exp(N log(1 + (e − 1))), so if
|e− 1| < p−1/(p−1) does hold, |log(1 + (e− 1))| ≤ |e− 1| whence

|N log(1 + (e− 1))| ≤ |N ||e− 1| < p1−1/(p−1)p−1 = p−1/(p−1)

and eN converges!.
So, for an accessible character ϕ which sends ξ to χ(ξ){ξ}N for N ∈ B<λ for a character χ of (Z/pZ)×,

define U to be

M≥rϕ (Γ1(Np);O(Wχ,<λ))
E−N

−→ O(X1,O[1/p]≥r)
U◦eN−→ O(X1,O[1/p]≥r1/p)↪→O(X1,O[1/p]≥r)

EN

−→M≥rk (Γ1(Np);O(Wχ,<λ)).

It should be clear by now that the main thrust of Colema’s idea is that, as we are ‘lucky’ enough
to find Eϕ and e, one can ‘twist back and forth’ to reduce problems to functions on X1,O[1/p]≥r. On
the other hand, r does not remain constant as e goes deeper into B (‘higher p-power levels’ which lead
indeed to less overconvergence allowed). Keeping track of these parameters carefully, Coleman constructs
families of overconvergent eigenforms. Perhaps it is a useful mental exercise to ask oneself: in construct-
ing families of modular forms of finite slope, what is it that one should ‘interpolate’?, or in exactly
what sense, should one ‘interpolate’? Since slopes are no longer fixed zero as in the ordinary case, this
question is legitimately tricky. Coleman’s answer is to interpolate the ‘Hecke polynomials’ of U , or more
precisely, the characteristic power series det(1 − TU) acting on ‘spaces of modular forms’. Lucky, the
complete-continuity of U singles out right pieces from families of overconvergent modular forms to makes
sense of U -eigenforms, which Coleman achieve by making appeal to Serre’s theory of Banach spaces.

It is indeed possible to bypass ‘Coleman’s trick’. One instead aims to construct automorphic bundles
of general weight and families by extending the ‘torsor’ structure of the Igusa covering to tubular neigh-
bourhoods of the ordinary locus; this is achieved by the Hodge-Tate map, which relates subgroups ‘C’
to the ω of E[p], and hence to the ‘automorphic bundle’ ω. See Andreatta-Iovita-Stevens/Pilloni.

An analogue of Hida’s Λ-adic forms is a construction of Coleman-Mazur eigencurve: there exists a
rigid analytic L-variety

f : C → W =
∐
χ

Wχ

where χ ranges over (Z/pNZ)×.
For every Cp-point ϕ of W, the fibre fϕ ∈ C defines an overconvergent modular eigenform of weight

κ and level Npν for some ν depending on ϕ.

Fix a non-zero rational number ρ. For any ϕ ∈ Wχ,<λ(Cp), there exists a ball Br ⊂ Wχ of radius r
centred at ϕ and an admissible open subset Uρ,r ⊂ C mapping by f to Br ↪→ Wχ such that, as a point
ξ of Br, corresponding to the character sending u (thought of as a parameter in Wχ) to (1 + p)kζ (for a
primitive pν-th root of unity ζ), ranges over the integers k ≥ 2 satisfying k > ρ+ 1, it gives an bijection
between their fibres {fξ}ξ in Uρ,r and the classical cuspidal modular eigenform of weight k, level Npν+1

9



(where level ‘Np’ is accounted for by χ), and of slope ρ. In other words, locally, C interpolates classical
modular eigenforms of finite slope.

Note that ‘overconvergent modular forms of weight ϕ’ is defined to be a function on Xν,O[1/p]≥r
multiplied by the Eisenstein series Eϕ of weight ϕ, and there is no ‘funny’ twist in making sense of
weights (in Hida theory, 〈 〉 is used to define a map down to the weight space, while in Coleman theory,
the corresponding map, therefore, is basically twist by weight characters themselves).

6 Appendix: p-adic L-functions

I shall elaborate a little about Coleman’s ζ, by following Lang’s Cyclotomic fields (see also Mazur’s un-
published notes ‘Analyse p-adique’; perhaps, to hear it from the horse’s mouth, Iwasawa’s PUP lecture
notes on p-adic L-functions would also help), which is necessary in writing down a concrete/explicit ex-
ample of p-adic families (Eisenstein families). OTOH, this would inevitably involve ‘p-adic L-functions’,
a deep subject on its own, which I was keen to avoid in the lectures altogether. Perhaps the best thing
to do is to make an attempt to read one of the references I’ve just given, but the following exposition
(following Lang, because Coleman does) has the benefit of looking much less terrifying.

Let X = {XN ;πN+1 : XN+1 � XN}N be an injective system/limit of finite sets XN ’s. By a function
f on X, I shall mean a system of functions f = {fN}N where each fN is defined on XN and the functions
are compatible, in the sense that, for ξ in XN , fN (ξ) =

∑
fN+1(ζ) holds, where the sum ranges over ζ

in XN+1 in the pre-image of ξ by πN+1. Observe that is f factors though XN , it factors though XN+

for N+ ≥ N ‘by projection’.
Given a locally constant function f on X (i.e. a function which factors through XN for some N) and

a function µ = {µN}N on X, one defines∫
X

fdµ =
∑

f(ξ)µN (ξ)

where the sum ranges over ξ in XN , and dµ or the system µ = {µN}N is called a distribution on X. By
the compatibility of f , the

∑
XN

f(ξ)µN (ξ) =
∑
XN+

f(ξ)µN+(ξ).

We say that µ is bounded when |µN (ξ)| is bounded for every ξ andN . When µ is indeed bounded, for a
continuous function f on X, f is approximated uniformly by locally constant functions, i.e., ||f−fN || → 0
as N tends to ∞ (where || || denotes the sup norm), hence ||fM − fN || → 0 a M,N →∞. In particular,∫
fNdµ converges, and let ∫

fdµ = lim
N

∫
fNdµ.

6.1 An example of distributions: Bernoulli distribution

Let the polynomial Bλ(X) in X be defined by tetX/et − 1 =
∑∞
λ=0Bλ(X)tλ/λ!. When X = 0, it gives

rise to the Bernoulli number Bλ.

Proposition 16 • The function sending ξ to Nλ−1Bλ(〈ξ〉) defines a distribution on {N−1Z/Z}N ,
where for any ρ in R/Z, 〈ρ〉 denote the smallest non-negative real number in the class of ρ in R/Z;

• the function µNλ sending ξ to Nλ−1λ−1Bλ(〈ξ/N〉) defines a distribution µλ on {Z/NZ}N .

Proposition 17 For the distribution µλ on {Z/pνZ}ν ,

Bλ/λ =

∫
Zp

dµλ

for µ = µλ.
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Proof. 1 is locally constant function (which is thought of as factoring through Z/pZ) and, by defini-
tion, the RHS is

∑
1µλ(ξ) =

∑
pλ−1λ−1Bλ(〈ξ/p〉) = λ−1

∑
pλ−1Bλ(〈ξ/p〉) = λ−1Bλ(0) = λ−1Bλ. The

non-trivial equality follows from

Bλ(X) = pλ−1
p−1∑
ν=1

Bλ((X + ν)/p)

which can be proved by unravelling the definition. Otherwise, see B3 in Section 2 in Chapter 2 of Lang. �

More generally, for a positive integer M , let χ be a function on Z/MZ, and define the generalised

‘Bernoulli polynomial’ Bλ,χ(X) by
∑M−1
ν=1 χ(ν)tet(ν+X)/etM − 1 =

∑∞
λ=0Bλ,χ(X)tλ/λ!

If χ is a Dirichlet character on Z/MZ extended from (Z/MZ)× by zeros, Bλ,χ(0) is Leopoldt’s
Bernoulli number Bλ,χ.

Note that, while µλ is a distribution, it is not in general a measure. However,

Proposition 18 For a rational number ρ prime to M (i.e. M is prime to both the numerator and
the denominator), the function µNλ,ρ which sends ξ to µNλ (ξ) − ρλµNλ (ρ−1ξ) defines a measure µλ,ρ on
{Z/NZ}N .

We shall now let N = pν , in which case X = Zp = {Z/pνZ}ν . Suppose also M is a p-power, so that
χ is thought of as a locally constant function on Zp factoring through Z/MZ.

Proposition 19 If χ is locally constant on Zp (so µ doesn’t have to be bounded to integrate it!)

Bλ,χ/λ =

∫
Zp

χdµ

for µ = µλ. In other words,

Bλ,χ = Mλ−1
M−1∑
ν=1

χ(ν)Bλ(〈ν/M〉).

Proof. Similar to the case when χ is ‘1’ proved above.�

Proposition 20 If ρ is an element of Z×p ,

µλ,ρ(ξ) = ξλ−1µ1,ρ(ξ).

Theorem 21 If ρ is an element of Z×p and λ is a positive integer such that ρλ 6= 1,

Bλ/λ = (1− ρλ)−1
∫
Zp

ξλ−1dµ(ξ)

where µ = µ1,ρ.

Proof. See Theorem 2.3 in Section 2, Chapter 2, Lang. �

As corollaries, one can prove ‘Kummer congruences’ and ‘Von Staudt congruence’.

Theorem 22 If χ is a character of finite order on Z×p ,

Bλ,χ/λ = (1− χ(ρ)ρλ)−1
∫
Z×p

χ(ξ)ξλ−1dµ(ξ)

where µ = µ1,ρ.
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Proof. See Theorem 2.4 in Section 2, Chapter 2, Lang. �

Recall that Coleman defines ζ(ϕ) , for ϕ in W(Cp) to be (ϕ(ρ)− 1)−1
∫
Z×p

ϕ(ξ)ξ−1 dµ(ξ) for µ = µ1,ρ

such that the denominator is well-defined. Hence ϕ is the character of Z×p sending ξ to {ξ}Nχ(ξ) for a
character χ of finite order, it gives rise to the Kubota-Leopoldt p-adic L-function Lp(1−N,χ). If N is
furthermore a positive integer, ζ(ϕ) = Lp(1−N,χ) = −BN,χ/[ ]N /N (the generalised Bernoulli number

with character χ/[ ]N (since ϕ(ξ) = χ(ξ){ξ}N = χ(ξ)(ξ/[ξ])N = (χ(ξ)/[ξ]N ){ξ}N ).

It is a reasonable guess now that there should be a p-adic L-functions defined over Coleman p-adic
families of p-adic overconvergent eigenforms of a (fixed) finite slope, and by extension to the Coleman-
Mazur/Buzzard eigencurve. See papers of Bellaiche, Emerton, Stevens, R.Pollack, Loeffler-Zerbes and
many others I have failed to mention due to my ignorance (please let me know before I embarrass myself),
if you are interested.
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