A Serre weight conjecture for $\bmod p$ Hilbert modular forms

Shu SASAKI

31st August 2020

Before I begin

Everything I say today is joint work with F. Diamond (DS). Some of it is joint with P. Kassaei (DKS).

My notes below contain a lot more details than what I intend to say.

Introduction

Let p be a rational prime. Let

$$
\bar{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

be a continuous, odd and irreducible representation over $\overline{\mathbb{F}}_{p}$.

Serre's conjecture

J.-P. Serre (1987) defined/specified

- $k(\bar{\rho}) \geq 2$
- $N(\bar{\rho}) \geq 1$, the Artin conductor prime to p,
and conjectured that there should be a cuspidal modular eigenform f of weight $k(\bar{\rho})$ and level $N(\bar{\rho})$ such that (for a choice of
$\left.\mathbb{C} \simeq \overline{\mathbb{Q}}_{p}\right)$,

$$
f \rightsquigarrow \bar{\rho}_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \xrightarrow{\rho_{f}} \mathrm{GL}_{2}\left(\overline{\mathbb{Z}}_{p}\right) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

is isomorphic to $\bar{\rho}$.

Serre's conjecture in the Hilbert case

Generalising the weight part of Serre's conjecture ("if $\bar{\rho}$ is modular, of what weight exactly?") to the setting of mod p HMFs (of regular weights) was initiated by Buzzard-Diamond-Jarvis (2010).

The BDJ conjecture ($p>2$) has been proved almost completely by Gee, Liu and Savitt.

Today, I will formulate a Serre weight conjecture for all weights within geometric theory of Hilbert modular forms (Katz, Goren, Andreatta-Goren,...).
We are generalising Edixhoven's reformulation (1992) of Serre's conjecture.
Geometry (of Shimura varieties) seems to provide genuinely new input into the mix.

To start with

Fix $\overline{\mathbb{Q}}, \overline{\mathbb{Q}}_{p}$ and $\overline{\mathbb{F}}_{p}$ and fix an embedding

$$
\imath: \overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}_{p}
$$

once for all.
Let

$$
\Sigma=\imath \circ \operatorname{Hom}_{\mathbb{Q}}(F, \overline{\mathbb{Q}})=\operatorname{Hom}_{\mathbb{Q}}\left(F, \overline{\mathbb{Q}}_{p}\right) .
$$

Suppose that there is only one prime v in \mathscr{O}_{F} above p.
Let $\mathbb{F}_{v}=\mathscr{O}_{F} / v$ denote the residue field at v.

If $F_{v}^{r} \subset F_{v}$ denote the maximal unramified extension of \mathbb{Q}_{p} of degree f_{v}, then the restriction to F_{v} defines a surjection

$$
\operatorname{Hom}_{\mathbb{Q}}\left(F, \overline{\mathbb{Q}}_{p}\right)=\Sigma \rightarrow \Sigma^{r}=\operatorname{Hom}_{\mathbb{Q}_{p}}\left(F_{v}^{r}, \overline{\mathbb{Q}}_{p}\right) \circlearrowleft \phi
$$

Suppose that $\left\{\tau_{\beta}(1), \ldots, \tau_{\beta}\left(e_{v}\right)\right\} \subset \Sigma$ is the pre-image of β in Σ^{r}.
Define an index shift Φ on Σ :

$$
\cdots \rightsquigarrow \tau_{\phi^{-1} \circ \beta}\left(e_{v}\right) \stackrel{\phi}{\rightsquigarrow} \tau_{\beta}(1) \rightsquigarrow \cdots \rightsquigarrow \tau_{\beta}\left(e_{v}\right) \stackrel{\phi}{\rightsquigarrow} \tau_{\phi \circ \beta}(1) \rightsquigarrow \cdots
$$

Models of HMFs

Let

$$
G=\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}
$$

and let

- $\Gamma \subset G\left(\mathbb{A}^{\infty}\right)$ maximal compact hyperspecial at p, which we always assume sufficiently small,
- (Rapoport/Deligne-Pappas/Pappas-Rapoport) a smooth integral model Y_{Γ} over $\overline{\mathbb{Z}}_{p}$ for

$$
G(\mathbb{Q}) \backslash(\mathbb{C}-\mathbb{R})^{\Sigma} \times G\left(\mathbb{A}^{\infty}\right) / \Gamma
$$

Pappas-Rapoport

The Pappas-Rapoport integral model Y_{Γ} parametrises HBAVs $s: A \rightarrow S$ of PEL type (in the sense of DP) such that the locally free \mathscr{O}_{S}-module of rank $[F: \mathbb{Q}]=d=e_{v} f_{v}$ with \mathscr{O}_{F} action

$$
\omega=s_{*} \Omega_{A / S}=\bigoplus_{\beta \in \Sigma^{r}} \omega_{\beta}
$$

where ω_{β} (locally free \mathscr{O}_{S}-module of rank e_{v}) comes equipped with a filtration (a 'complete flag')

$$
0=\omega_{\beta}(0) \subset \omega_{\beta}(1) \subset \cdots \subset \omega_{\beta}\left(e_{v}\right)=\omega_{\beta}
$$

such that \mathscr{O}_{F} acts via $\tau \in \Sigma$ on $\omega_{\tau}:=\omega_{\beta}(i) / \omega_{\beta}(i-1)$, when τ is of the form $\tau=\tau_{\beta}(i)$.

When $e_{v}=1, \omega$ is locally free module of rank 1 over $\mathscr{O}_{F} \otimes_{\mathbb{Z}} \mathscr{O}_{S}$.

Automorphic bundle $\mathscr{A}_{(k, \ell)}$

- associated to $(k, \ell) \in \mathbb{Z}^{\Sigma} \times \mathbb{Z}^{\Sigma}$, we have the automorphic line bundle

$$
\mathscr{A}_{(k, \ell)}=\bigotimes_{\tau \in \Sigma} \omega_{\tau}^{k_{\tau}} \otimes \delta_{\tau}^{\ell_{\tau}}
$$

where ω_{τ} is a locally-free-of-rank-1-over- $\mathscr{O}_{Y_{\Gamma}}$ piece of ω on which \mathscr{O}_{F} acts via τ, and where

$$
\delta=\bigwedge_{\mathscr{O}_{F} \otimes_{\mathbb{Z}} \mathscr{O}_{Y_{\Gamma}}}^{2} R^{1} s_{*} \Omega_{A / Y_{\Gamma}}^{\bullet}
$$

is free of rank 1 over $\mathscr{O}_{F} \otimes_{\mathbb{Z}} \mathscr{O}_{Y_{\Gamma}}$ and δ_{τ} is defined similarly.

Mod p HMFs

The space of $\bmod p$ Hilbert modular forms of weight (k, ℓ) and of level Γ is defined to be

$$
H^{0}\left(\bar{Y}_{\Gamma, \mathscr{A}}^{(k, \ell)},\right.
$$

where $\bar{Y}_{\Gamma}=Y_{\Gamma} \times \overline{\mathbb{F}}_{p}$.

$F \neq \mathbb{Q}$

When $F \neq \mathbb{Q}$,

- every Hilbert modular form of weight (k, ℓ) over $\overline{\mathbb{Q}}_{p} \simeq \mathbb{C}$ has its weight paritious, i.e. $k_{\tau}+2 \ell_{\tau}$ is independent of τ.

There are a lot more $\bmod p$ Hilbert modular forms that are not in the image of

$$
H^{0}\left(Y_{\Gamma}, \mathscr{A}_{(k, \ell)}\right) \rightarrow H^{0}\left(\bar{Y}_{\Gamma}, \mathscr{A}_{(k, \ell)}\right) .
$$

- In stark contract to the case $F=\mathbb{Q}$, there are lots of $\bmod p$ Hilbert modular forms of '(partially) negative weights'.

Example $(\ell=0)$

Emerton-Reduzzi-Xiao's partial Hasse invariants H_{τ} : the Verschibung $V=\left(\operatorname{Fr}_{A^{\vee}}\right)^{\vee}: A^{(p)} \rightarrow A$ gives rise to

$$
V^{*}: \bar{\omega}_{\beta} \rightarrow\left(\operatorname{Fr}^{*} \bar{\omega}\right)_{\beta}=\bar{\omega}_{\phi^{-1} \circ \beta}^{p}
$$

which breaks up into maps on $\bar{\omega}_{\tau_{\beta}(i)}=\bar{\omega}_{\beta}(i) / \bar{\omega}_{\beta}(i-1)$

H_{τ} of weight

$$
h_{\tau}= \begin{cases}1 \Phi^{-1} \tau+(-1) \tau & \text { if } \tau=\tau_{\beta}(i) \text { for } e_{v} \geq i \geq 2 \\ p \Phi^{-1} \tau+(-1) \tau & \text { if } \tau=\tau_{\beta}(1)\end{cases}
$$

Automorphic Galois representations

Theorem (DS)
Let f be an element $H^{0}\left(\bar{Y}_{\Gamma}, \mathscr{A}_{(k, \ell)}\right)$ and S be a finite set of finite places in F, containing all v dividing p and all v such that $\mathrm{GL}_{2}\left(\mathscr{O}_{F_{v}}\right) \not \subset \Gamma$.
Suppose that

$$
T_{v} f=\alpha_{v} f
$$

and

$$
S_{v} f=\beta_{v} f
$$

for all v not in S. Then there exists a continuous representation

$$
\bar{\rho}_{f}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

which is unramified outside S and the characteristic polynomial in X of $\bar{\rho}_{f}\left(\right.$ Frob $\left._{v}\right)$ is

$$
X^{2}-\alpha_{v} X+\beta_{v} \mathrm{~N}_{F / \mathbb{Q}}(v)
$$

Remark

The novelty of our theorem is that (k, ℓ) does not have to satisfy the parity condition ($k_{\tau}+2 \ell_{\tau}$ is independent of τ in Σ). The parity case is known by Emerton-Reduzzi-Xiao ($e_{v}=1$), RX ($e_{v} \geq 1$), and Goldring-Koskivirta (general Shimura varieties).

Conjecture (Folklore)
Let

$$
\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

be totally odd, continuous and irreducible. Then $\bar{\rho}$ is modular in the sense above.

Idea of our proof for the theorem when $e_{V}=1$

Recall that not every $\bar{\rho}$ arises as the reduction of a characteristic zero eigenform of level prime to p.

How do we deal with HMFs of non-paritous weight? We lift mod p HMFs of parallel weight but of level $\Gamma \cap \Gamma_{1}(p)$.

The idea then is to establish congruences, i.e., find an eigenform of parallel weight $N+2$ (to be specified) and level $\Gamma \cap \Gamma_{1}(p)$ which is congruent $\bmod p$ (and Hasse) to f and which can be lifted to a characteristic zero eigenform when N is sufficiently large (the ampleness of a line bundle over X_{Γ}).

Preliminary reduction steps

- 「 may be taken to be a sufficiently small principal congruence subgroup of level prime to p,
- by twisting if necessary, WLOG $\ell_{\tau}=-1$ for every τ in Σ,
- (can always) find $N \in \mathbb{Z}$ and $r \in \mathbb{Z}^{\Sigma}$ such that $0 \leq r_{\tau} \leq p-1$ but not all r_{τ} are simultaneously $p-1$ such that $k-(N+2-r)$ is a linear combination of h_{τ} 's. Multiplying H_{τ} 's defines an injection of global sections $\rightsquigarrow k=N+2-r$.
[- the Katz-Mazur-Pappas covering

$$
\pi: Y_{\Gamma \cap \Gamma_{1}(p)} \rightarrow Y_{\Gamma}
$$

with extension

$$
\pi: X_{\Gamma \cap \Gamma_{1}(p)} \rightarrow X_{\Gamma}
$$

to minimal compactifications]

- observe that there is a Hecke equivariant injection

$$
H^{0}\left(\bar{Y}_{\left.\Gamma, \mathscr{A}_{(k,-1)}\right)}\right) \hookrightarrow H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, \mathscr{A}_{(N+2,-1)}\right)
$$

with its image contained in

$$
\begin{aligned}
& H^{0}\left(\bar{X}_{\Gamma \cap \Gamma_{1}(p)}, \overline{\iota_{*} K} \otimes_{\mathscr{O}_{\bar{X}_{\Gamma \cap \Gamma_{1}(p)}}} \bar{\omega}^{N}\right) \\
\subset & H^{0}\left(\bar{X}_{\Gamma \cap \Gamma_{1}(p)}, \bar{\iota}_{*} \bar{K} \otimes_{\bar{X}_{\Gamma \cap \Gamma_{1}(p)}}\right) \\
= & H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, \mathscr{A}_{(N+2,-1)}\right)
\end{aligned}
$$

where
$-\iota: Y_{\Gamma \cap \Gamma_{1}(p)} \hookrightarrow X_{\Gamma \cap \Gamma_{1}(p)}$,

- K denotes the dualising sheaf over the Cohen-Macaulay scheme $Y_{\Gamma \cap \Gamma_{1}(p)}$,
- and $\omega=\omega_{X_{\Gamma \cap \Gamma_{1}(p)}}$ here denotes the push-forward by ι of the analogue of $\mathscr{A}_{(1,0)}$ over $Y_{\Gamma \cap \Gamma_{1}(p)}$ (it is also the pull-back by π of the ample line bundle $\omega=\omega_{X_{\Gamma}}$ over X_{Γ}).

Theorem (DKS)

$$
R^{r} \pi_{*} K=0
$$

for $r>0$.
Proved by carefully describing fibres of the degeneracy map

- the DKS theorem implies

$$
R^{1} \pi_{*}\left(\iota_{*} K\right)=0
$$

hence

$$
\pi_{*}\left(\iota_{*} K\right) \rightarrow \pi_{*}\left(\overline{\iota_{*} K}\right)
$$

is surjective and, combined with the ampleness of ω, it follows that

$$
\begin{array}{ccc}
H^{0}\left(X_{\Gamma}, \pi_{*} \iota_{*} K\right. & \left.\otimes_{\mathscr{O}_{X_{\Gamma}}} \omega^{N}\right) & \longrightarrow \\
\| & H^{0}\left(X_{\Gamma}, \pi_{*}\left(\overline{\iota_{*} K}\right) \otimes_{\mathscr{O}_{X_{\Gamma}}} \bar{\omega}^{N}\right) \\
H^{0}\left(X_{\Gamma \cap \Gamma_{1}(p)}, \mathscr{A}_{(N+2,-1)}\right) & H^{0}\left(\bar{X}_{\Gamma \cap \Gamma_{1}(p)}, \frac{\|}{\iota_{*} K} \otimes_{\mathscr{X}_{\bar{x}_{\Gamma \cap \Gamma_{1}(p)}}} \bar{\omega}^{N}\right)
\end{array}
$$

is surjective when N is sufficiently large, because

$$
H^{1}\left(X_{\Gamma}, \pi_{*} \iota_{*} K \otimes_{\mathscr{O}_{X_{\Gamma}}} \omega^{N}\right)=0
$$

To recap, the image of the Hecke equivariant injection

$$
H^{0}\left(\bar{Y}_{\Gamma, \mathscr{A}}^{(k,-1)}, \hookrightarrow H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, \mathscr{A}_{(N+2,-1)}\right)\right.
$$

$(k=2+N-r)$ is contained in

$$
H^{0}\left(\bar{X}_{\Gamma \cap \Gamma_{1}(p)}, \overline{\iota_{*} K} \otimes_{\mathscr{O}_{\bar{X}_{\Gamma \cap \Gamma_{1}(p)}}} \bar{\omega}^{N}\right) \nleftarrow H^{0}\left(X_{\Gamma \cap \Gamma_{1}(p)}, \mathscr{A}_{(N+2,-1)}\right) .
$$

To finish off, we make appeal to:

- there exists a Galois representation associated to an eigenform in $H^{0}\left(X_{\Gamma \cap \Gamma_{1}(p)}, \mathscr{A}_{(N+2,-1)}\right)[1 / p]$ by work of Carayol, Taylor, \ldots.
Q.E.D.

Remark

The $e_{V}>1$ case can be dealt with similarly- to build an ample line bundle over X_{Γ}, we incorporate RX's observation about a line bundle relative ample over Y_{Γ}^{DP}.

In preparation of the DS conjecture

Definition (the Diamond-Kassaei minimal cone)
Let $\equiv^{\mathrm{DK}} \subset \mathbb{Z}^{\Sigma}$ be the set of $k=\sum_{\tau} k_{\tau} \tau$ such that

- $p k_{\tau} \geq k_{\phi^{-1} \tau}$ if τ is of the form $\tau_{\beta}(1)$,
- $k_{\tau} \geq k_{\Phi^{-1} \tau}$ if τ is of the form $\tau_{\beta}(i)$ for $2 \leq i \leq e_{v}$.

And let \equiv be the subset of $k \in \overline{D K}^{\mathrm{DK}}$ such that $k_{\tau} \geq 1$ for every τ in Σ.

Definition

$$
k \succeq k^{\prime}
$$

if $k-k^{\prime}$ is a non-negative integer linear combination of the weights h_{τ} of the partial Hasse invariants.

Conjecture

Conjecture (DS)

Let

$$
\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{\rho}\right),
$$

totally odd, continuous, irreducible.
Fix ℓ in \mathbb{Z}^{Σ}. Then there exists $k(\bar{\rho}, \ell)$ lying in \equiv satisfying the following conditions:

- $\bar{\rho}$ is modular of weight (k, ℓ) if and only if $k \succeq k(\bar{\rho}, \ell)$
- if $k \in$, then $k \succeq k(\bar{\rho}, \ell)$ if and only if $\bar{\rho}_{v}=\left.\bar{\rho}\right|_{\operatorname{Gal}\left(\overline{\mathbb{Q}}_{\rho} / F_{v}\right)}$ has a crystalline lift of weight (k, ℓ), i.e. of Hodge-Tate weight ($k+\ell-1, \ell$).

Remark

Assuming $\bar{\rho}$ is (geometrically) modular, the existence of $k(\bar{\rho}, \ell)$ is suggested by DK- the weight filtration $w(f)$ of a mod p HMF f lies in \equiv^{DK}.

The first condition: 'minimality'

Assuming the existence of $k(\bar{\rho}, \ell) \in$ 三 satisfying the first condition, one sees that

- the conjecture implies the folklore conjecture earlier,
- the conjecture (i.e. the second condition) boils down to

Conjecture *

Suppose that $\bar{\rho}$ is irreducible and modular. If $k \in \bar{Z}$, then $\bar{\rho}$ is modular of weight (k, ℓ) if and only if $\bar{\rho}_{v}$ has crystalline lift of weight (k, ℓ).

The second condition: p-adic Hodge-theory

Assuming the existence of $k(\bar{\rho}, \ell) \in \equiv$ satisfying the second condition, Conjecture follows from Conjecture * if we know

Conjecture ** (DS)

Suppose that $\bar{\rho}$ is irreducible and $\bar{\rho} \simeq \bar{\rho}_{f}$ for some f. Then $w(f) \in$ 三.

The second condition is suggested by the Breuil-Mézard conjecture and modular representation theory of $\mathrm{GL}_{2}\left(\mathbb{F}_{v}\right)$ - it is somehow the underlying theme of DKS.

The qualification ' $k \in \Xi$ ' in the second condition is needed- when $k \notin$ 三, the condition $k \succeq k(\bar{\rho}, \ell)$ does not imply that $\bar{\rho}_{v}$ has crystalline lift of weight (k, ℓ).

Example when $F=\mathbb{Q}$ and $\ell=0$

$$
\begin{gathered}
\Xi^{\mathrm{DK}}=\{k \geq 0\}, \\
\equiv=\{k \geq 1\}, \\
k \succeq k^{\prime} \text { if } k-k^{\prime}=(p-1) n \geq 0 .
\end{gathered}
$$

There exists $k(\bar{\rho}) \geq 1$ such that the following are equivalent:

- $\bar{\rho}$ is modular of weight k,
- $k \succeq k(\bar{\rho})$,
- $\bar{\rho}_{p}$ has a crystalline lift of weight $(k, 0)$, for every $k \geq 1$.
$\rightsquigarrow k(\bar{\rho})$ is the smallest possible weight for which $\bar{\rho}$ is modular.

How is our conjecture related to the Buzzard-Diamond-Jarvis conjecture?

Algebraic modularity (BDJ) for pedants

Let V be a finite-dimensional $\overline{\mathbb{F}}_{p}$-representation of $\mathrm{GL}_{2}\left(\mathbb{F}_{v}\right)$. We say that $\bar{\rho}$ is algebraic modular of weight V if there exist

- a quaternion algebra D over F split at p and ramified at all but one place in $\operatorname{Hom}_{\mathbb{Q}}(F, \mathbb{R})$,
- a sufficiently small open compact subgroup $U \subset\left(D \otimes_{F} \mathbb{A}_{F}^{\infty}\right)^{\times}$ $\left(\rightsquigarrow\right.$ the Shimura curve Y_{U} over F) such that
- U is of level prime to p (i.e. $\operatorname{GL}_{2}\left(\mathscr{O}_{F_{v}}\right) \subset U$),
- if $U^{+}=\operatorname{ker}\left(U \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{v}\right)\right)$, then $Y_{U^{+}} \rightarrow Y_{U}$ is étale of degree equal to $\left|\mathrm{GL}_{2}\left(\mathbb{F}_{v}\right)\right|$
such that $\bar{\rho}$ is an $\overline{\mathbb{F}}_{p}[\operatorname{Gal}(\bar{F} / F)]$-subquotient of $H_{\text {êt }}^{1}\left(Y_{U} \times \bar{F}, \mathcal{V}\right)(1)$.

Algebraic modular $=$ Geometric modular?

Conjecture (DS)

Let $(k, \ell) \in \mathbb{Z}^{\Sigma} \times \mathbb{Z}^{\Sigma}$ and $k_{\tau} \geq 2$ for every τ in Σ. If $\bar{\rho}$ is algebraic modular of weight (k, ℓ), i.e., of representation weight

$$
V_{k, 1-k-\ell}=\bigotimes_{\tau} \operatorname{Sym}^{k_{\tau}-2} \operatorname{det}^{1-k_{\tau}-\ell_{\tau}}\left(V_{\mathrm{st}} \otimes_{\tau} \overline{\mathbb{F}}_{p}\right)
$$

(where $V_{\text {st }}$ is the standard representation of $\mathrm{GL}_{2}\left(\mathbb{F}_{v}\right)$ on two copies of \mathbb{F}_{v}) then $\bar{\rho}$ is modular of weight (k, ℓ).
If furthermore $k \in \equiv$, the converse holds. This is false if $k \notin \equiv$!

Remarks

We know that if $\bar{\rho}$ is algebraic modular of paritious weight (k, ℓ), then $\bar{\rho}$ is modular of weight (k, ℓ).

By our construction of modular Galois representations, if $\bar{\rho}$ is modular of some weight, $\bar{\rho}$ is algebraic modular of some weight.

Conjecture (Recap)

Conjecture (DS)

Let

$$
\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\rho}\right),
$$

totally odd, continuous, irreducible.
Fix ℓ in \mathbb{Z}^{Σ}. Then there exists $k(\bar{\rho}, \ell)$ lying in \equiv satisfying the following conditions:

- $\bar{\rho}$ is modular of weight (k, ℓ) if and only if $k \succeq k(\bar{\rho}, \ell)$
- if $k \in \equiv$, then $k \succeq k(\bar{\rho}, \ell)$ if and only if $\bar{\rho}_{v}=\left.\bar{\rho}\right|_{\operatorname{Gal}\left(\bar{Q}_{p} / F_{v}\right)}$ has a crystalline lift of weight (k, ℓ), i.e. of Hodge-Tate weight $(k+\ell-1, \ell)$.

(recap)

Assuming 'minimal weight' $k(\bar{\rho}, \ell) \in$ 三 exists (that satisfies the first condition), the second condition boils down to:

Conjecture * (DS)

Suppose that $\bar{\rho}$ is irreducible and modular. If $k \in \equiv$, then $\bar{\rho}$ is modular of weight (k, ℓ) if and only if $\bar{\rho}_{v}$ has crystalline lift of weight (k, ℓ).

Example when $[F: \mathbb{Q}]=2, e_{v}=0$ and $\ell=0$

Suppose $[F: \mathbb{Q}]=2$ and $e_{v}=0$. Hence $\Sigma=\Sigma^{r}$. Fixing τ in Σ,

$$
\Sigma=\left\{\tau, \phi \circ \tau=\phi^{-1} \circ \tau\right\}
$$

and we will write weights labelled by τ on the left of every pair.
We furthermore assume $\ell=(0,0)$.

Theorem (DS)
Let $2<r \leq p$. Suppose that $\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ is irreducible and modular.

If $\bar{\rho}_{v}$ has crystalline lift of weight

$$
((r, 1),(0,0))
$$

(=HT weight $((r-1,0),(0,0)))$ then $\bar{\rho}$ is (geometric) modular of weight

$$
((r, 1),(0,0)) .
$$

Proof (Sketch)

For brevity, we furthermore assume that $\bar{\rho}$ is of Taylor-Wiles type-the exceptional case can be dealt with by an ad hoc argument.

Step 1

Given that $\bar{\rho}_{v}$ has crystalline lift of weight

$$
((r, 1),(0,0))
$$

we deduce from p-adic Hodge theory that $\bar{\rho}_{v}$ also has crystalline lifts of weight

$$
(k, \ell)=((r-1, p+1),(0,0))
$$

and

$$
\left(k^{\prime}, \ell^{\prime}\right)=((r+1, p+1),(-1,0)) .
$$

Step 2: algebraic companion forms

By work of Gee and his collaborators on the BDJ conjecture that $\bar{\rho}$ is algebraic modular of weight $(k, \ell)\left(=\right.$ weight $\left.V_{k, 1-k-\ell}\right)$ and ($k^{\prime}, \ell^{\prime}$).

Step 3: geometric companion forms

Since r and 1 are paritious, $\bar{\rho}$ is geometric modular of weight (k, ℓ) and ($k^{\prime}, \ell^{\prime}$).

Step 4: combinatorics

Let f (resp. f^{\prime}) be a geometric HMF of weight (k, ℓ) (resp.
($\left.k^{\prime}, \ell^{\prime}\right)$) such that $\bar{\rho}_{f} \simeq \bar{\rho}$ (resp. $\bar{\rho} \simeq \bar{\rho}_{f^{\prime}}$). One observes

- $\theta_{\tau}(f)$ is of weight

$$
((r-1, p+1),(0,0))+((1, p),(-1,0))=((r, 2 p+1),(-1,0))
$$

- $f^{\prime} H_{\tau}$ is an eigenform of weight

$$
((r+1, p+1),(-1,0))+((-1, p),(0,0))=((r, 2 p+1),(-1,0))
$$

- $\theta_{\tau}(f)=f^{\prime} H_{\tau}$ (by replacing them by forms of higher level if necessary- so that q-expansion coefficients at 'bad primes' are 0)

θ-operators/cycles

Theorem (AG)
For any HMF f of weight (k, ℓ), the image $\theta_{\tau}(f)$ is divisible by H_{τ} if and only if f is divisible by H_{τ} or p divides k_{τ}.

Step 5: a mod p HMF of partial weight one

Deduce from the theorem that f is divisible by H_{τ}. The HMF f / H_{τ} of weight

$$
((r-1, p+1),(0,0))-((-1, p),(0,0))=((r, 1),(0,0))
$$

is what we are looking for.

Remarks

The argument is reversible except that we do not know the 'algebraic modular = geometric modular' conjecture (in particular we do not know 'geometric modular \Rightarrow algebraic modular' even in the paritious case).

When $[F: \mathbb{Q}]=2=e_{v}$ and $\Sigma=\{\tau(1), \tau(2)\}$, we can prove: if $\bar{\rho}_{v}$ has crystalline lift of weight $((1, r),(0,0))$, then $\bar{\rho}$ is modular of weight $((1, r),(0,0))$.

Final remark

We have seen the interplay between algebraic weights and geometric weights:

$$
V_{k, 1-k-\ell} \longleftrightarrow \mathscr{A}_{(k, \ell)} \text {. }
$$

In my work with FD and P. Kassaei, we make intrinsic connections between mod p representations of $\mathrm{GL}_{2}\left(\mathbb{F}_{v}\right)$ and $\bmod p$ geometry of the Shimura variety for $G=\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}$:

- the JH factors in $\operatorname{Ind}_{B\left(\mathbb{F}_{v}\right)}^{\mathrm{GL}_{2}\left(\mathbb{F}_{v}\right)} \chi$, where χ is a character $\mathbb{F}_{v}^{\times} \rightarrow \overline{\mathbb{F}}_{p}^{\times}$
- the graded pieces of a filtration on the χ-isotypic component of the space $H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, K\right)$ of $\bmod p$ HMFs of parallel weight 2 and level $\Gamma \cap \Gamma_{1}(p)$

Thank you very much for listening.

