Serre's conjecture about weights of $\bmod p$ Hilbert modular forms

Dr Shu SASAKI

5th August 2020

Before I begin

Everything I say today is joint work with F. Diamond (DS). Some part of it is joint with P. Kassaei (DKS).

My notes below contain a lot more details than what I intend to say.

What is this talk about?

This talk is about unravelling how

- mod p algebraic geometry
- and $\bmod p$ representation theory
of GL_{2} (over a totally real field) are related in the context of mod p theory of automorphic forms.

Some of what we've done below would undoubtedly be useful in formulating a 'mod p Langlands philosophy'.

Introduction

Let $p>2$ be a rational prime. Let

$$
\bar{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

be a continuous and odd (if c is the complex conjugation in the decomposition subgroup $\operatorname{Gal}(\mathbb{C} / \mathbb{R})$ at infinity, then $\operatorname{det} \bar{\rho}(c)=-1)$.

Old conjecture

J.-P. Serre (1987) defined/specified

- $k(\bar{\rho}) \geq 2$
- $N(\bar{\rho}) \geq 1$, the Artin conductor prime to p
and conjectured that there should be a cuspidal modular eigenform F of weight $k(\bar{\rho})$ and level $N(\bar{\rho})$ such that (for a choice of
$\mathbb{C} \simeq \overline{\mathbb{Q}}_{p}$),

$$
F \rightsquigarrow \bar{\rho}_{F}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \xrightarrow{\rho_{F}} \mathrm{GL}_{2}\left(\overline{\mathbb{Z}}_{p}\right) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

is isomorphic to $\bar{\rho}$.

Not so old theorem

Theorem (Khare-Wintenberger 2009)
Serre's conjecture, as stated above, holds.

Example of Serre's $k(\bar{\rho})$

Suppose that $\bar{\rho}$ is reducible at p. In fact, suppose that $\bar{\rho}$ is tamely ramified at p. In this case,

$$
\left.\bar{\rho}\right|_{I} \simeq\left(\begin{array}{cc}
\epsilon^{k_{1}} & 0 \\
0 & \epsilon^{k_{2}}
\end{array}\right)
$$

where ϵ is the $\bmod p$ cyclotomic character $\epsilon: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \overline{\mathbb{F}}_{p}^{\times}$. WLOG, we may assume $0 \leq k_{1} \leq k_{2} \leq p-2$.

Serre's recipe says

$$
k(\bar{\rho})=1+p k_{1}+k_{2}
$$

if $\left(k_{1}, k_{2}\right)$ is not $(0,0)$; while

$$
k(\bar{\rho})=p
$$

if $\left(k_{1}, k_{2}\right)=(0,0)$, i.e., $\bar{\rho}$ is unramified at p.

Geometric mod p modular forms

Serre realised that it was possible to follow Katz to define modularity of $\bar{\rho}$ differently: $\bar{\rho}$ is modular of weight k and of level N if it arises from an eigenform in the sections

$$
H^{0}\left(X_{\Gamma_{1}(N)} \times \overline{\mathbb{F}}_{p}, \omega^{k}\right)
$$

with $k=k(\bar{\rho})$ and $N=N(\bar{\rho})$, where

- $X_{\Gamma_{1}(N)}$ is the compactified modular curve of level $\Gamma_{1}(N)$ over \mathbb{Z}_{p},
- $\omega=s_{*} \Omega_{E / Y_{\Gamma_{1}(N)}}$ over $Y_{\Gamma_{1}(N)} \rightsquigarrow \omega$ over $X_{\Gamma_{1}(N)}$.

Replace ω by $\omega\left(-Z_{\Gamma_{1}(N)}\right)$ for cusp forms.

What does this change of perspective entail?

- there are modular forms that may exist only over $\overline{\mathbb{F}}_{p}$ (and not lift over to $\overline{\mathbb{Q}}_{p}$):

$$
\rightarrow H^{0}\left(X_{\Gamma}, \omega^{k}\left(-Z_{\Gamma}\right)\right) \rightarrow H^{0}\left(\bar{X}_{\Gamma}, \bar{\omega}^{k}\left(-\bar{Z}_{\Gamma}\right)\right) \rightarrow
$$

is not necessarily surjective when $k=1$,

- for a weight $k=1$ eingenform f in $H^{0}\left(\bar{X}_{\Gamma}, \bar{\omega}\left(-Z_{\Gamma}\right)\right)$
$f \rightsquigarrow g=f h \rightsquigarrow$ an eigen $G \in H^{0}\left(X_{\Gamma}, \omega^{p}\left(-Z_{\Gamma}\right)\right) \rightsquigarrow \rho_{G} \rightsquigarrow \bar{\rho}_{G}=: \bar{\rho}_{f}$
- the weight recipe needs to be modified accordingly- when $\bar{\rho}$ is unramified at $p, k(\bar{\rho})=1$ rather than p. The new $k(\bar{\rho})$ is minimal/smallest possible (Edixhoven 1992).
[If $\bar{\rho}$ is modular, $k(\bar{\rho})$ is exactly the weight filtration of $f(\bar{\rho})$]

Mod p Langlands correspondence

A neat consequence (still assuming $p>2$):
"Theorem"
There exists a 'correspondence' between

- eigenforms in $H^{0}\left(X_{\Gamma_{1}(N)} \times \overline{\mathbb{F}}_{p}, \omega^{k}\right)$ of 'minimal' weight $k \geq 1$ and 'minimal' level N prime to p (with $\mathbb{C} \simeq \overline{\mathbb{Q}}_{p}$),
- odd continuous representations $\bar{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ of conductor N prime to p such that $\bar{\rho}_{p}:=\left.\bar{\rho}\right|_{\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)}$ has a crystalline lift of 'minimal' HT weight ($k-1,0$).

This follows from work of Khare-Wintenberger, Kisin, Taylor, Emerton, Diamond, Wiles, Carayol, Ribet, Coleman-Voloch, Gross, Edixhoven...

Local-global compatibility

In some sense, local-global compatibility at p (resp. away from p) manifests itself as 'weight' $k(\bar{\rho})$ (resp. 'level' $N(\bar{\rho})$).

Serre's conjecture in the Hilbert case

Our motivation was, in some sense, to generalise the $\bmod p$ Langlands correspondence above with \mathbb{Q} replaced by a totally real field F - in particular local-global compatibility at p.

This was initiated by Buzzard-Diamond-Jarvis (2010) for 'regular weights $k \geq 2$ '.

Suppose that p is inert in F (throughout my talk today).
In my forthcoming joint work with F. Diamond, we deal with the general ramified case (i.e. no assumption on p relative to F).

Fix $\overline{\mathbb{Q}}, \overline{\mathbb{Q}}_{p}$ and $\overline{\mathbb{F}}_{p}$ and fix embeddings

$$
\imath: \overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}_{p}
$$

and

$$
\jmath: \overline{\mathbb{Q}} \rightarrow \mathbb{C}
$$

once for all.
Let

$$
\Sigma=\operatorname{Hom}_{\mathbb{Q}}(F, \overline{\mathbb{Q}}) .
$$

By definition,

$$
\imath \circ \Sigma=\operatorname{Hom}_{\mathbb{Q}}\left(F, \overline{\mathbb{Q}}_{p}\right)
$$

and

$$
\jmath \circ \Sigma=\operatorname{Hom}_{\mathbb{Q}}(F, \mathbb{R})
$$

$G=\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}$

To understand geometry of the Shimura variety of $\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}$, it is necessary to work with the Shimura variety of

(of level full congruence) and 'descend' to that of $\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}$, but I am going to use them interchangeably. So let

$$
G=\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}
$$

[By abuse of notation, often use G to denote its model, e.g. $\left.G\left(\mathbb{F}_{p}\right)=\mathrm{GL}_{2}\left(\mathscr{O}_{F} / p\right)\right]$

Models of HMFs

- $\Gamma \subset G\left(\mathbb{A}^{\infty}\right)$ maximal compact hyperspecial at p, which we always assume sufficiently small,
- (Raapoport/Deligne-Pappas) an integral \mathbb{Z}_{p}-model Y_{Γ} for

$$
G(\mathbb{Q}) \backslash(\mathbb{C}-\mathbb{R})^{\Sigma} \times G\left(\mathbb{A}^{\infty}\right) / \Gamma
$$

- associated to $(k, \ell) \in \mathbb{Z}^{20 \Sigma} \times \mathbb{Z}^{20 \Sigma}$, we have the automorphic line bundle

$$
\mathscr{A}_{(k, \ell)}=\bigotimes_{\tau \in \imath \circ \Sigma} \omega_{\tau}^{k_{\tau}} \otimes \delta_{\tau}^{\ell_{\tau}}
$$

where

$$
\omega=s_{*} \Omega_{A / Y_{\Gamma}}=\bigoplus_{\tau} \omega_{\tau}
$$

and

$$
\delta=\bigwedge_{\mathscr{O}_{F} \otimes_{\mathbb{Z}} \mathscr{O}_{Y_{\Gamma}}}^{2} R^{1} s_{*} \Omega_{A / Y_{\Gamma}}^{\bullet}=\bigoplus_{\tau} \delta_{\tau}
$$

Mod p HMFs

The space of $\bmod p$ Hilbert modular forms of weight (k, ℓ) are defined to be

$$
H^{0}\left(\bar{Y}_{\Gamma}, \mathscr{A}_{(k, \ell)}\right)
$$

where $\bar{Y}_{\Gamma}=Y_{\Gamma} \times \overline{\mathbb{F}}_{p}$.
Note that, since p is (in particular) unramified, we identify:

$$
\imath \circ \Sigma \simeq \operatorname{Hom}_{\mathbb{F}_{p}}\left(\mathscr{O}_{F} / p, \overline{\mathbb{F}}_{p}\right)
$$

The Frobenius Φ acts on Σ. If $\left|\mathscr{O}_{F} / p\right|=p^{f}$ and fix τ in Σ,

$$
\Sigma=\left\{\tau, \Phi \circ \tau, \ldots, \Phi^{f-1} \circ \tau\right\} \simeq \mathbb{Z} / f \mathbb{Z}
$$

$F=\mathbb{Q}$

Recall, when $F=\mathbb{Q}$ (and $p>2$), that

- if a mod p cusp form f is not in the image of

$$
H^{0}\left(X_{\Gamma}, \omega^{k}\left(-Z_{\Gamma}\right)\right) \rightarrow H^{0}\left(\bar{X}_{\Gamma}, \bar{\omega}^{k}\left(-\bar{Z}_{\Gamma}\right)\right)
$$

then either (1) $k=1$ or $(2) k \geq 12, p=3$ and $N=1$.
[(Serre/Carayol) If it is about lifting eigenforms with characters intact, exclude f in (2) such that $\bar{\rho}_{f}$ is induced from $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}(\sqrt{-3}))$.]

- $H^{0}\left(X_{\Gamma}, \omega^{k}\left(-Z_{\Gamma}\right)\right)$ is 0 for negative k.

$F \neq \mathbb{Q}$

When $F \neq \mathbb{Q}$,

- every Hilbert modular form of weight (k, ℓ) over $\overline{\mathbb{Q}}_{p} \simeq \mathbb{C}$ has its weight paritious, i.e. $k_{\tau}+2 \ell_{\tau}$ is independent of τ.

There are a lot more $\bmod p$ Hilbert modular forms that are not in the image of

$$
H^{0}\left(Y_{\Gamma}, \mathscr{A}_{(k, \ell)}\right) \rightarrow H^{0}\left(\bar{Y}_{\Gamma}, \mathscr{A}_{(k, \ell)}\right) .
$$

- In stark contract to the case $F=\mathbb{Q}$, there are lots of $\bmod p$ Hilbert modular forms of 'negative weights'.

Example $(\ell=0)$

For every τ in $\imath \circ \Sigma$, let

$$
\begin{aligned}
& V=F_{A^{\vee}}^{\vee}: A^{(p)}=A \times \bar{Y}_{\Gamma, \Phi} \bar{Y}_{\Gamma} \rightarrow A \\
\rightsquigarrow \quad & \omega_{\tau}=\left(s_{*} \Omega_{A / \bar{Y}_{\Gamma}}\right)_{\tau} \xrightarrow{V^{*}}\left(\Phi^{*} s_{*} \Omega_{A / \bar{Y}_{\Gamma}}\right)_{\tau}=\omega_{\Phi^{-1} \circ \tau}^{p} \\
\rightsquigarrow & H_{\tau} \in H^{0}\left(Y_{\Gamma} \times \mathbb{F}_{p}, \omega_{\Phi^{-1} \circ \tau}^{p} \otimes \omega_{\tau}^{-1}\right)
\end{aligned}
$$

denote the partial Hasse invariant at τ of weight

$$
h_{\tau}=(0, \ldots, 0, p,-1,0, \ldots, 0)=p 1_{\Phi-1_{\circ} \tau}-1_{\tau}
$$

where $p($ resp. -1$)$ stands at $\Phi^{-1} \circ \tau($ resp. $\tau)$.

Automorphic Galois representations

Theorem (DS)
Let f be an element $H^{0}\left(Y_{\Gamma} \times \overline{\mathbb{F}}_{p}, \mathscr{A}_{(k, \ell)}\right)$ and S be a finite set of finite places in F, containing all v dividing p and all v such that $\mathrm{GL}_{2}\left(\mathscr{O}_{F_{v}}\right) \not \subset \Gamma$.
Suppose that

$$
T_{v} f=\alpha_{v} f
$$

and

$$
S_{v} f=\beta_{v} f
$$

for all v not in S. Then there exists a continuous representation

$$
\bar{\rho}_{f}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

which is unramified outside S and the characteristic polynomial in X of $\rho_{f}\left(\mathrm{Frob}_{v}\right)$ is

$$
X^{2}-\alpha_{v} X+\beta_{v} N_{F / \mathbb{Q}}(v)
$$

Remarks

The novelty of our theorem is that (k, ℓ) does not have to satisfy the parity condition that $k_{\tau}+2 \ell_{\tau}$ is independent of τ in Σ. The parity case is known by Emerton-Reduzzi-Xiao and Goldring-Koskivirta.

How do we deal with HMFs of non-paritous weight? We lift mod p HMFs of parallel weight but of level $\Gamma \cap \Gamma_{1}(p)$.

Conjecture (DS)
Let

$$
\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

be totally odd, continuous and irreducible. Then $\bar{\rho}$ is modular in the sense above.

In preparation of the DS conjecture

Definition (the Diamond-Kassaei minimal cone)

$$
\equiv=\left\{k=\sum_{\tau \in \imath \circ \Sigma} k_{\tau} \tau \mid p k_{\tau} \geq k_{\phi^{-1} \circ \tau}\right\} \subset \mathbb{Z}^{\imath \circ \Sigma}
$$

and

$$
\bar{\Xi}^{+}=\left\{k \in \equiv \mid k_{\tau} \geq 1\right\}
$$

Definition

$$
k \succeq k^{\prime}
$$

if $k-k^{\prime}$ is a non-negative integer linear combination of the weights h_{τ} of the partial Hasse invariants.

Conjecture

Conjecture (DS)

Let

$$
\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{\rho}\right),
$$

totally odd, continuous, irreducible.
Fix ℓ in $\mathbb{Z}^{20 \Sigma}$. Then there exists $k(\bar{\rho}, \ell)$ lying in Ξ^{+}satisfying the following conditions:

- $\bar{\rho}$ is modular of weight (k, ℓ) if and only if $k \succeq k(\bar{\rho}, \ell)$
- if $k \in \Xi^{+}$, then $k \succeq k(\bar{\rho}, \ell)$ if and only if $\left.\bar{\rho}\right|_{\operatorname{Gal}\left(\overline{\mathbb{Q}}_{\rho} / F_{\rho}\right)}$ has a crystalline lift of weight (k, ℓ), i.e. of Hodge-Tate weight ($k+\ell-1, \ell$).
$\leadsto a \bmod p$ Langlands correspondence for $\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}$.

Example when $F=\mathbb{Q}$ and $\ell=0$

$$
\begin{gathered}
\equiv=\{k \geq 0\}, \\
\bar{\Xi}^{+}=\{k \geq 1\}, \\
k \succeq k^{\prime} \text { if } k-k^{\prime}=(p-1) n \geq 0 .
\end{gathered}
$$

There exists $k(\bar{\rho}) \geq 1$ such that the following are equivalent:

- $\bar{\rho}$ is modular of weight k,
- $k \succeq k(\bar{\rho})$,
- $\bar{\rho}_{p}$ has a crystalline lift of weight $(k-1,0)$, for every $k \geq 1$.
$\rightsquigarrow k(\bar{\rho})$ is the smallest possible weight for which $\bar{\rho}$ is modular.

How is our conjecture related to the Buzzard-Diamond-Jarvis conjecture?

Serre weights

It is well-known that an irreducible representation theory of $G\left(\mathbb{F}_{p}\right)$ is of the form

$$
V_{k, \ell}=\bigotimes_{\tau \in \Sigma} \operatorname{det}^{\ell_{\tau}} \otimes \operatorname{Sym}^{k_{\tau}-2}\left(V \otimes \mathscr{O}_{F}, \tau \overline{\mathbb{F}}_{p}\right)
$$

where V is the standard representation of $G\left(\mathbb{F}_{p}\right)$ on two copies of \mathscr{O}_{F} / p and where

$$
0 \leq \ell_{\tau} \leq p-1
$$

but not all ℓ_{τ} are simultaneously $p-1$ and

$$
0 \leq k_{\tau}-2 \leq p-1
$$

We often call such a representation a Serre weight.

Algebraic modularity (BDJ)

Definition

We say that $\bar{\rho}$ is algebraic modular of Serre weight V, we mean that there exist

- a quaternion algebra D over F, split at exactly one infinite place and all place above $p:\left(D \otimes_{F} F_{p}\right)^{\times} \simeq G\left(\mathbb{Q}_{p}\right)$,
- a sufficiently small open compact subgroup $\Gamma \subset\left(D \otimes_{F} \mathbb{A}_{F}^{\infty}\right)^{\times}$ containing $G\left(\mathbb{Z}_{p}\right)$
such that $\bar{\rho}$ is a $\overline{\mathbb{F}}_{p}[\operatorname{Gal}(\bar{F} / F)]$-subquotient of

$$
\left(\operatorname{Pic}^{0} X_{\operatorname{ker}\left(\Gamma \rightarrow G\left(\mathbb{F}_{p}\right)\right)}^{D}[p](\bar{F}) \otimes V\right)^{G\left(\mathbb{F}_{p}\right)}
$$

where $G\left(\mathbb{F}_{p}\right)=\operatorname{GL}_{2}\left(\mathscr{O}_{F} / p\right)$ acts diagonally over \otimes and $\operatorname{Gal}(\bar{F} / F)$ acts trivially on V.

Algebraic modular $=$ Geometric modular?

Conjecture (DS)
Let $(k, \ell) \in \mathbb{Z}^{\Sigma} \times \mathbb{Z}^{\Sigma}$ and $k_{\tau} \geq 2$ for every τ in Σ. If $\bar{\rho}$ is algebraic modular of weight (k, ℓ), i.e., of Serre weight

$$
V_{k, 1-k-\ell}=\bigotimes_{\tau} \operatorname{Sym}^{k_{\tau}-2} \operatorname{det}^{1-k_{\tau}-\ell_{\tau}}\left(V \otimes_{\tau} \overline{\mathbb{F}}_{p}\right),
$$

then $\bar{\rho}$ is modular of weight (k, ℓ).
Furthermore, if $k \in \Xi^{+}$, the converse holds.

Example/Evidence when $[F: \mathbb{Q}]=2$ and $\ell=(0,0)$

Theorem (DS)

Let $2 \leq r \leq p$ and suppose that r is odd. Suppose that $\bar{\rho}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ is irreducible and modular.
If $\bar{\rho}_{p}$ has crystalline lift of weight

$$
((r, 1),(0,0))
$$

$(=\mathrm{HT}$ weight $((r-1,0),(0,0)))$ then $\bar{\rho}$ is (geometric) modular of weight

$$
((r, 1),(0,0))
$$

[We fix τ in Σ and write weights labelled by τ on the left of every pair]

Proof when $2<r$

By p-adic Hodge theory, show that $\bar{\rho}_{p}$ has two crystalline lifts of weight $(k, \ell)(=\mathrm{HT}$ weight $(k+\ell-1, \ell))$ and $\left(k^{\prime}, \ell^{\prime}\right)$
$(k, \ell)=((r-1, p+1),(0,0))$ and $\left(k^{\prime}, \ell^{\prime}\right)=((r+1, p+1),(-1,0))$
respectively.
By work of Gee and his collaborators on the BDJ conjecture that $\bar{\rho}$ is algebraic modular of weight $(k, \ell)\left(=\right.$ Serre weight $\left.V_{k, 1-k-\ell}\right)$ and $\left(k^{\prime}, \ell^{\prime}\right)$.
Since r and 1 are paritious, $\bar{\rho}$ is geometric modular of weight (k, ℓ) and $\left(k^{\prime}, \ell^{\prime}\right)$.

Let f (resp. f^{\prime}) be a geometric HMF of weight (k, ℓ) (resp. ($\left.k^{\prime}, \ell^{\prime}\right)$) such that $\bar{\rho}_{f} \simeq \bar{\rho}$ (resp. $\bar{\rho} \simeq \bar{\rho}_{f^{\prime}}$). One observes

- $\theta_{\tau}(f)$ is of weight

$$
((r-1, p+1),(0,0))+((1, p),(-1,0))=((r, 2 p+1),(-1,0))
$$

- $f^{\prime} H_{\tau}$ is an eigenform of weight

$$
((r+1, p+1),(-1,0))+((-1, p),(0,0))=((r, 2 p+1),(-1,0))
$$

- $\theta_{\tau}(f)=f^{\prime} H_{\tau}$.

Deduce from a theory of θ-operators $/ \theta$-cycles that f is divisible by H_{τ}. The HMF f / H_{τ} of weight

$$
((r-1, p+1),(0,0))-((-1, p),(0,0))=((r, 1),(0,0))
$$

is what we are looking for.

We have seen an example of interplay between algebraic HMFs and geometric HMFs:

$$
\text { Serre weight } V_{k, 1-k-\ell} \leadsto \mathscr{A}_{(k, \ell)}
$$

We will see a few more examples of this. They make intrinsic connections between mod p representations of $G\left(\mathbb{F}_{p}\right)=\mathrm{GL}_{2}\left(\mathscr{O}_{F} / p\right)$ and mod p geometry of the Shimura variety for $G=\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2}$.

Mod p representation theory

$$
\text { Let } \chi:\left(\mathscr{O}_{F} / p\right)^{\times} \rightarrow \overline{\mathbb{F}}_{p}^{\times} \text {be a character } \prod_{\Gamma} \tau^{r_{\tau}} \text {. }
$$

(Bardoe-Sin/Breuil-Paskunas)

$$
I_{\chi}=\operatorname{Ind}_{B\left(\mathbb{F}_{p}\right)}^{G\left(\mathbb{F}_{p}\right)}(1 \otimes \chi)
$$

has a filtration:

$$
0=I_{\chi}[d+1] \subset I_{\chi}[d] \subset \cdots \subset I_{\chi}[1] \subset I_{\chi}[0]=I_{\chi}
$$

such that the graded piece at $0 \leq j \leq d$ is of the form

$$
I_{\chi}[j] / I_{\chi}[j+1]=\bigoplus_{J \subset \Sigma,|J|=j} I_{\chi}^{J}
$$

where I_{χ}^{J} is either zero or irreducible of the form

$$
V_{k^{J}, \ell^{J}}=\bigotimes_{\tau} \operatorname{det}^{\ell_{\tau}^{J}} \otimes \operatorname{Sym}^{k_{\tau}^{J}-2}\left(V \otimes_{\tau} \overline{\mathbb{F}}_{p}\right)
$$

In case you are interested...

$$
\left(\ell_{\tau}^{J}, k_{\tau}^{J}-2\right)= \begin{cases}\left(0, r_{\tau}\right) & \text { if } \tau \notin J \text { and } \Phi \circ \tau \notin J \\ \left(0, r_{\tau}-1\right) & \text { if } \tau \in J \text { and } \Phi \circ \tau \notin J \\ \left(r_{\tau}+1, p-2-r_{\tau}\right) & \text { if } \tau \notin J \text { and } \Phi \circ \tau \in J \\ \left(r_{\tau}, p-1-r_{\tau}\right) & \text { if } \tau \in J \text { and } \Phi \circ \tau \in J\end{cases}
$$

$Y_{\Gamma \cap \Gamma_{0}(p)}$ and $Y_{\Gamma \cap \Gamma_{1}(p)}$

Let $\Gamma_{0}(p) \subset G\left(\mathbb{Z}_{p}\right)\left(\right.$ resp. $\left.\Gamma_{1}(p) \subset G\left(\mathbb{Z}_{p}\right)\right)$ denote the pre-image, by $G\left(\mathbb{Z}_{p}\right) \rightarrow G\left(\mathbb{Z}_{p} / p \mathbb{Z}_{p}\right)$, of $\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right)\left(\right.$ resp. $\left(\begin{array}{ll}* & * \\ 0 & 1\end{array}\right)$).

- (Pappas/Goren-Kassaei) $Y_{\Gamma \cap \Gamma_{0}(p)}=\{(A \xrightarrow{f} B)\} / \simeq$, where A and B are HBAVs of the parametrised by Y_{Γ} and $C=\operatorname{ker} f$ is an $\left(\mathscr{O}_{F} / p\right)$-submodule scheme of $A[p]$ such that the Weil pairing $A[p] \simeq A[p]^{\vee}$ induces

$$
C \simeq \operatorname{ker}\left(A[p]^{\vee} \rightarrow C^{\vee}\right)
$$

- (Pappas) $Y_{\Gamma \cap \Gamma_{1}(p)}=\{(A \xrightarrow{f} B, P)\} / \simeq$, where f is of the type parametrised by $Y_{\Gamma \cap \Gamma_{0}(p)}$ and P is an $\left(\mathscr{O}_{F} / p\right)$-generator of C in the sense of Drinfeld-Katz-Mazur.

Spaces of mod p HMFs of weight 2 and level $\Gamma \cap \Gamma_{1}(p)$

Let K be the dualising sheaf (of level obvious from the context). The (pull-back of) Kodaira-Spencer over \bar{Y}_{Γ} allows use to identify K with the automorphic bundle of weight $(k, \ell)=(2,-1)$.

- $H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{0}(p)}, K\right)$
- $H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, K\right)$

$$
H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, K\right)=\bigoplus_{\chi:\left(\mathscr{O}_{F} / p \mathscr{O}_{F}\right)^{\times} \rightarrow \overline{\mathbb{F}}_{p}^{\times}} H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, K\right)_{\chi}
$$

Mod p Jacquet-Langlands correspondence

Theorem (DKS)

There is a 'Hecke equivariant' spectral sequence

$$
E_{1}^{j, i}=\bigoplus_{|J|=j} H^{i+j}\left(\bar{Y}_{\Gamma}^{J}, \mathscr{A}_{\chi}^{J}\right) \Rightarrow H^{i+j}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, K\right)_{\chi}
$$

where

- G^{J} is $\operatorname{Res}_{F / \mathbb{Q}}$ of the units of the quaternion algebra over F ramified exactly at $\jmath \circ Q_{J} \subset \jmath \circ \Sigma=\operatorname{Hom}_{\mathbb{Q}}(F, \mathbb{R})$ with

$$
Q_{J}=\{\tau \in J \mid \Phi \circ \tau \notin J\} \cup\{\tau \notin J \mid \Phi \circ \tau \in J\}
$$

- \bar{Y}_{Γ}^{J} is the $\overline{\mathbb{F}}_{p^{\prime}}$-fibre of the $\mathbb{Z}_{(p)}$-integral model of the Shimura variety of G^{J} with level $\Gamma \subset G^{J}(\mathbb{A}) \simeq G\left(\mathbb{A}^{\infty}\right)$,
- \mathscr{A}_{χ}^{J} is a line bundle over $\bar{Y}_{\Gamma}^{J} \xrightarrow{\mu}$ the JH factor I_{χ}^{J} of I_{χ}

In case you are interested in $\mathscr{A}_{\chi}^{J} \cdots$

The line bundle \mathscr{A}_{χ}^{J} over \bar{Y}_{Γ}^{J} defined in terms of the parameters of the (non-zero) Jordan-Holder factor I_{χ}^{J} in $I_{\chi}=\operatorname{Ind}_{B\left(\mathbb{Z}_{\rho}\right)}^{G\left(\mathbb{Z}_{\rho}\right)} \otimes \chi$, i.e., when

$$
\begin{gathered}
I_{\chi}^{J}=V_{\left(k^{J}, \ell^{J}\right)}=\bigotimes_{\tau} \operatorname{det}^{\ell_{\tau}^{J}} \otimes \operatorname{Sym}^{k_{\tau}^{J}-2}\left(V \otimes_{\tau} \overline{\mathbb{F}}_{p}\right), \\
\mathscr{A}_{\chi}^{J}=\mathscr{A}^{Q_{J}}=\left[\bigotimes_{\tau \notin Q_{J}} \delta_{\tau_{\tau}^{J}}^{\ell^{J}} \otimes \omega_{\tau_{\tau}^{J}}^{k^{J}}\right] \otimes\left[\bigotimes_{\tau \in Q_{J}} \delta_{\tau}^{\ell_{\tau}^{J}+1} \otimes \operatorname{Sym}^{k_{\tau}^{J}-2} \gamma_{\tau}\right]
\end{gathered}
$$

$\underline{\gamma_{\tau}^{J}}{ }^{J}$ is the τ-part of the 'relative de Rham cohomology sheaf' over \bar{Y}_{Γ} and $\left.\delta_{\tau}=\bigwedge_{\sigma_{\bar{Y}_{\Gamma}^{J}}}^{2} \gamma_{\tau}\right]$

Mod p Jacquet-Langlands correspondence at $i+j=0$

Corollary (DKS)

There is a $(d+1)$-step 'Hecke equivariant' decreasing filtration

$$
\begin{array}{ccc}
H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, K\right)_{\chi}[d+1] & \subset \cdots \subset & H^{0}\left(\bar{Y}_{\left\ulcorner\cap \Gamma_{1}(p)\right.}, K\right)_{\chi}[0] \\
0 & H^{0}\left(\bar{Y}_{\left\ulcorner\cap \Gamma_{1}(p)\right.}, K\right)_{\chi}
\end{array}
$$

such that
$H^{0}\left(\bar{Y}_{\left\ulcorner\cap \Gamma_{1}(p)\right.}, K\right)_{\chi}[j] / H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, K\right)_{\chi}[j+1] \hookrightarrow \bigoplus_{J \subset \Sigma,|J|=j} H^{0}\left(\bar{Y}_{\Gamma}^{J}, \mathscr{A}_{\chi}^{J}\right)$

In case you are interested in what I mean by the spectral sequence...

- $\overline{\mathbb{F}}_{p}$-linear differentials

$$
d_{r}^{i, j}: E_{r}^{j, i} \rightarrow E_{r}^{j+r, i-r+1}
$$

for $r \geq 1, j \geq 0$ and $i \geq-j$ with

$$
E_{r+1}^{j, i}=\operatorname{ker} d_{r}^{j, i} / \operatorname{Im} d_{r}^{j+r, i-r+1}
$$

- a decreasing filtration of length $d+1$ on $H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, K\right)_{\chi}$ and an isomorphisms

$$
E_{\infty}^{j, i}=E_{d+1}^{j, i} \simeq H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, K\right)_{\chi}[j] / H^{0}\left(\bar{Y}_{\Gamma \cap \Gamma_{1}(p)}, K\right)_{\chi}[j+1]
$$

Example when $F=\mathbb{Q}$

Suppose $F=\mathbb{Q}$.
Let $\Sigma=\{\tau\}$ and χ be a character $(\mathbb{Z} / p \mathbb{Z})^{\times} \xrightarrow{z \mapsto z^{r} \chi} \overline{\mathbb{F}}_{p}^{\times}$.

$$
\begin{gathered}
J=\varnothing \rightsquigarrow Q_{J}=\varnothing \rightsquigarrow \mathscr{A}_{\chi}^{J}=\omega^{r_{\chi}} \\
J=\{\tau\} \rightsquigarrow Q_{J}=\varnothing \rightsquigarrow \mathscr{A}_{\chi}^{J}=\delta^{r_{\chi}} \otimes \omega^{p+1-r_{\chi}}
\end{gathered}
$$

An analogous spectral sequence degenerates at E_{1} and it gives rise to...

Gross's exact sequence

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(\bar{X}_{\Gamma}, \delta^{r_{\chi}} \otimes \omega^{p+1-r_{\chi}}\left(-Z_{\Gamma}\right)\right) \rightarrow \cdots \\
\cdots \rightarrow & H^{0}\left(\bar{X}_{\Gamma \cap \Gamma_{1}(p)}, K\right)_{\chi} \rightarrow H^{0}\left(\bar{X}_{\Gamma}, \omega^{r_{x}+2}\left(-Z_{\Gamma}\right)\right) \rightarrow 0 .
\end{aligned}
$$

This is itself a geometric manifestation of the exact sequence of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$-representations:

$$
0 \rightarrow \operatorname{det}^{r} x \otimes \operatorname{Sym}^{p-1-r_{x}} \mathbb{F}_{p}^{2} \rightarrow \operatorname{Ind}_{B\left(\mathbb{F}_{p}\right)}^{\mathrm{GL}\left(\mathbb{F}_{p}\right)} 1 \otimes \chi \rightarrow \operatorname{Sym}^{r} \times \mathbb{F}_{p}^{2} \rightarrow 0
$$

Remark

We can locate the obstruction for the injection to be an isomorphism, with an explicit example. If I venture my guess, the obstruction is of 'Eisenstein'.

Finally, one can also prove the following vanishing result for relative cohomology of the dualising sheaf:

Theorem (DKS)
Let $\pi: Y_{\Gamma \cap \Gamma_{1}(p)} \rightarrow Y_{\Gamma}$ be the natural projection on the integral \mathbb{Z}_{p}-models for G. Then

$$
R^{r} \pi_{*} K=0
$$

for $r>0$.
This is used in our construction of $\bmod p$ automorphic Galois representations above.

